DOI QR코드

DOI QR Code

MODIS-estimated Microphysical Properties of Clouds Developed in the Presence of Biomass Burning Aerosols

MODIS 관측자료를 이용한 러시아 산불 영향 하에 발달한 구름의 미세 물리적 특성 연구

  • Kim, Shin-Young (Global Environment System Reasearch Lab., National Institute of Meteorological Research Seoul) ;
  • Sohn, Byung-Ju (School of Earth of Environmental Sciences, Seoul National University)
  • 김신영 (기상연구소 지구환경시스템연구팀) ;
  • 손병주 (서울대학교 지구환경과학부)
  • Published : 2008.08.30

Abstract

An algorithm was developed to retrieve both cloud optical thickness and effective particle radius considered the aerosol effect on clouds. This study apply the algorithm of Nakajima and Nakajima (1995) that is used to retrieve cloud optical thickness and effective particle radius from visible, near infrared satellite spectral measurements. To retrieve cloud properties, Look-up table (LUT) was made under different atmospheric conditions by using a radiative transfer model. Especially the vertical distribution of aerosol is based on a tropospheric aerosol profile in radiative transfer model. In the case study, we selected the extensive forest fire occurred in Russia in May 2003. The aerosol released from this fire may be transported to Korea. Cloud properties obtained from these distinct atmospheric situations are analysed in terms of their possible changes due to the interactions of the clouds with the aerosol particle plumes. Cloud properties over the East sea at this time was retrieved using new algorithm. The algorithm is applied to measurements from the MODerate Resolution Imaging Spectrometer (MODIS) onboard the Terra spacecrafts. As a result, cloud effective particle radius was decreased and cloud optical thickness was increased during aerosol event. Specially, cloud effective particle radius is hardly greater than $20{\mu}m$ when aerosol particles were present over the East Sea. Clouds developing in the aerosol event tend to have more numerous but smaller droplets.

본 연구에서는 에어로솔의 간접 효과를 고려한 구름의 광학두께와 유효입자반경을 산출하기 위해 새로운 알고리즘을 개발하였다. 구름의 미세물리적 특성을 산출하기 위해 Nakajima and Nakajima(1995)의 방법을 응용하였다. 다양한 대기상태에서 복사전달모델을 이용하여 미리 계산한 서로 다른 LUT을 적용하여 최종 산출물인 구름광학두께와 유효입자반경을 산출하였다. 러시아지역에 산불이 있었던 2003년 5월 한반도 주변을 사례로 선택하였다. 이 때 발생한 에어로솔은 대기 흐름을 따라 한반도까지 도달하여 한반도 주변의 날씨에 매우 많은 영향을 주었다. 본 연구에서는 이 시기에 러시아 지역의 산불로 인하여 발생한 에어로솔이 한반도 주변의 구름에 어떠한 영향을 주는지 알아보았다. 이 사례의 알고리즘 적용을 위해 Terra위성에 탑재된 분광계인 MODIS자료를 사용하였다. 사례분석 결과, 에어로솔이 있는 시기에는 유효입자반경이 $20{\mu}m$ 이상의 큰 구름은 거의 존재하지 않았음에 비해, 에어로솔이 거의 없는 시기에는 $20{\mu}m$ 이상의 큰 구름도 다수 존재하였다. 즉, 에어로솔의 영향하에 발달한 구름은 구름광학두께는 크고, 유효입자반경은 작은 구름이라는 것을 확인할 수 있었다. 이러한 결과는 에어로솔이 구름의 미세물리적 특성을 변화시킨다는 것을 보여준다.

Keywords

References

  1. 곽종흠, 서명석, 김맹기, 곽서연, 이태희, 2005. 스카이 라디오미터(Sky-radiometer)로 관측된 공주지역 에어로솔의 광학적 특성, 한국지구과학회지, 26(8): 790-799
  2. 임주연, 전영신, 조경미, 이상삼, 신혜정, 2004. 2003년 5월의 연무 관측시 에어로솔의 기상, 물리, 화학 특성, 한국대기환경학회지, 20: 697-711
  3. Baum, B. A., P. F. Soulen, K. I. Strabala, M. D. King, S. A. Ackerman, W. P. Menzel, and P. Yang, 2000. Remote sensing of cloud properties using MODIS Airborne Simulator imagery during SUCCESS. II . Cloud thermodynamic phase, J. Geophys. Res., 105: 11,781-11,792 https://doi.org/10.1029/1999JD901090
  4. Breon, F. M., D. Tanre, and S. Generoso, 2002. Aerosol effect on cloud droplet size monitored from satellite, Science, 295: 834-838 https://doi.org/10.1126/science.1066434
  5. Cattani, E., M. J. Costa, F. Torricella, V. Levizzani, and A. M. Silva, 2003. Comparison of cloud microphysical properties retrieved from different algorithms during aerosol transport events. Proc. 2003 EUMETSAT Meteorological Satellite Conf., Weimar, Germany, 29, Sept.-3 Oct., 678-685
  6. Costa, M. J., E. Cattani, F. Torricella, A. M. Silva, and V. Levizzani, 2004. Cloud microphysical properties retrieval in the presence of strong aerosol events. Proc. 2003 EUMETSAT Meteorological Satellite Conf., Weimar, Germany, 29, Sept.- 30 Oct., 671-677
  7. Gosse, S., D. Labric, and P. Chylck, 1995. Refractive index of ice in the 1.4-7.8 mm spectral range. Appl. Opt., 34: 6582-6586 https://doi.org/10.1364/AO.34.006582
  8. Kawamoto, K. and T. Nakajima, 2003. Seasonal variation of cloud particle size from AVHRR remote sensing, Geophys. Res. Lett., 30: 1810-1813 https://doi.org/10.1029/2003GL017437
  9. Kim, D. H., B. J. Sohn, T. Nakajima, and T. Takamura, 2005. Aerosol radiative forcing over East Asia determined from groundbased solar radiation measurements. J. Geophys. Res., D10(D10S22), doi:10.1029/2004JD00467
  10. King, M. D., S. C. Tsay, S. Platnick, M. Wang, and K. N. Liou, 1998. Cloud retrieval algorithms for MODIS: optical thickness, effective particle radius, and thermodynamic phase. MODIS Algorithm Theoretical Basis Document ATBDMOD-05 (NASA Goddard Space Flight Center, Greenbelt, Md., 1996), available at http://modis-atmos.gsfc.Vasa.gov/_docs/atbd_mod05.pdf
  11. Koppmann, R., R. Bauer, F. J. Johnen, C. Plass, and J. Rudolph, 1992. The Distribution of Light Nonmethane Hydrocarbons over the Mid-Atlantic: Results of the Polarstern Cruise ANT VII/1, J. Atmos. Chem., 15: 215-234 https://doi.org/10.1007/BF00115395
  12. Lee, K. H., J. E. Kim, Y. J. Kim, J. Kim, and W. von Hoyningen, 2005. Impact of the smoke aerosol from Russian forest fires on the atmospheric environment over Korea during May 2003. Atmos. Env., 39: 85-99 https://doi.org/10.1016/j.atmosenv.2004.09.032
  13. Nakajima, T. and M. D. King, 1990. Determination of the Optical Thickness and Effective Particle Radius of Clouds from Reflected Solar Radiation Measurements. Part I: Theory, J. Atmos. Sci., 47, 1878-1893 https://doi.org/10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2
  14. Nakajima, T. Y. and T. Nakajima, 1995. Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions, J. Atmos. Sci., 52: 4043-4059 https://doi.org/10.1175/1520-0469(1995)052<4043:WADOCM>2.0.CO;2
  15. Oh, S. N., B. J. Sohn, and S. S. Lee, 2004. Aerosol optical and radiative properties observed at Anmyeon and Jeju, Korea in the Spring of 2000 and 2001, Environmental Mornitoring and Assessment, 92: 95-115 https://doi.org/10.1023/B:EMAS.0000014511.81178.3f
  16. Rosenfeld, D., 1999. TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall, Geophys. Res. Lett., 26: 3105-3108 https://doi.org/10.1029/1999GL006066
  17. Swap, R., M. Garstang, S. A. Macko, P. D. Tyson, W. Maenhaut, P. Artaxo, P. Kallberg, and R. Talbot, 1996. The long range transport of southern African aerosols to the tropical South Atlantic, J. Geophys. Res., 101: 23,777-23,791
  18. Twomey, S. and T. Cocks, 1989. Remote sensing of cloud parameters from spectral reflectance in the near-infrared, Beitr. Phys. Atmos. 62: 172-179
  19. Yoon, S. C., J. G. Won, A. H. Omar, S. W. Kim, and B. J. Sohn, 2005. Estimation of the radiative forcing by key aerosol types in worldwide locations using a column model and AERONET data, Atmos. Env., 39: 6620-6630