• Title/Summary/Keyword: Spacecrafts

Search Result 62, Processing Time 0.025 seconds

A Study on the Impact Pressure of a Falling Body upon a Free Surface Water (자유수면에 낙하하는 물체의 충격압력 변화에 관한 연구)

  • Lee, Jong-Boong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.3
    • /
    • pp.295-304
    • /
    • 2001
  • The hydrodynamic impact problem was studied from 1929 to recent. Especially, Impact pressure is important for the design of the ships and offshore structure and spacecrafts, and under weapons. A ship traveling at high speed or in heavy sea has its bow and bottom damaged by high pressure caused by impact with and detachment from the water surface. Considerable impact may also occur when large waves hit the cross member or deck plate of an offshore structure within the splash zone. Many engineering cases require consideration of impact pressure, the movement of objects and change of the flow field. This study was obtained the pressure distribution of a falling body that is deadrise angle $0^{\circ}$ and deadrise angle $5^{\circ}$ upon a water surface by the experiment with the impact machine. The theoretical equation was obtained the air region and the interface and the water region which devide 3 parties between the body and the water surface for an investigation of the complete phenomena. Pressure distributions and histories compare favorably with available experimental data. The numerical results are similar to the experimental results for the impact force type with Fo(1+$cos{\pi}t/tc$).

  • PDF

Recent Activities in Space Environment Engineerings in Japan Aerospace Exploration Agency

  • Koshiishi, Hideki
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.93.2-93.2
    • /
    • 2011
  • Japan Aerospace Exploration Agency (JAXA) has measured space environment and its effects on spacecraft and astronaut since 1987. At present, we have operated space environment monitors onboard one GEO spacecraft, one QZO spacecraft, and two LEO spacecrafts. The obtained space environment data has been gathered into the Space Environment and Effects System database (SEES, http://sees.tksc.jaxa.jp/). In this presentation, measurement result of space environment in low earth orbit obtained by the Daichi satellite from 2006 through 2011 is reported as well as recent activities in space environment engineerings in JAXA. The Technical Data Acquisition Equipment (TEDA) on board the Daichi satellite (Advanced Land Observing Satellite: ALOS) had been operated in low earth orbit at 700 km altitude with 98 degree inclination from February 2006 until April 2011. The TEDA consists of the Light Particle Telescope and the Heavy Ion Telescope. The operation period of the Daichi satellite was through the solar-activity minimum period. The space radiation environment around the Daichi satellite had been almost stable. However, large solar flares followed by CMEs sometimes disturbed the space radiation environment in the orbit of the Daichi satellite. In addition, high speed solar wind often flowed and modulated the electron flux in the horn region. On the other hand, a little variation was seen in the SAA region.

  • PDF

EVALUATION OF THE MEASUREMENT NOISE AND THE SYSTEMATIC ERRORS FOR THE KOMPSAT-1 GPS NAVIGATION SOLUTIONS

  • Kim Hae-Dong;Kim Eun-Kyou;Choi Hae-Jin
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.278-280
    • /
    • 2004
  • GPS Navigation Solutions are used for operational orbit determination for the KOMPSAT-1 spacecraft. GPS point position data are definitely affected by systematic errors as well as noise. Indeed, the systematic error effects tend to be longer term since the GPS spacecrafts have periods of 12 hours. And then, the overlap method of determining orbit accuracy is always optimistic because of the presence of systematic errors with longer term effects. In this paper, we investigated the measurement noise and the system error for the KOMPSAT-l GPS Navigation Solutions. To assess orbit accuracy with this type of data, we use longer data arcs such as 5-7 days instead of 30 hour data arc. For this assessment, we should require much more attention to drag and solar radiation drag parameters or even general acceleration parameters in order to assess orbit accuracy with longer data arcs. Thus, the effects of the consideration of the drag, solar radiation drag, and general acceleration parameters were also investigated.

  • PDF

Testing Capability of CME Eccentricity Parameter

  • Rho, Su-Lyun;Cho, Kyung-Suk;Chang, Heon-Young;Moon, Yong-Jae;Kim, Rok-Soon;Park, Young-Deuk
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.37.4-38
    • /
    • 2009
  • Rho et al.(2008) showed that the eccentricity parameter of a CME is an important indicator for forecasting CME geoeffectiveness. In this study we have tested a capability of the eccentricity parameter as an indicator of CME direction. For this work we considered 11 CMEs observed by both SOHO/LASCO and STEREO/SECCHI (2007-2008 from Temmer et al. 2009) coronagraphs. We have estimated earthward direction angles for these CMEs based on two different methods: (1) the eccentricity parameter from a single coronagraph SOHO/LASCO and (2) the triangulation technique using a pair of spacecrafts LASCO/STEREO-A and LASCO/STEREO-B. As a result, we have found that for 7 out of 11 CME events their direction angles are consistent with each other within $20^{\circ}$. This result demonstrates that the earthward direction based on the eccentricity parameter can be a good potential indicator for CME propagation direction.

  • PDF

A Solar Cell Based Coarse Sun Sensor for a Small LEO Satellite Attitude Determination

  • Zahran, Mohamed;Aly, Mohamed
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.631-642
    • /
    • 2009
  • The sun is a useful reference direction because of its brightness relative to other astronomical objects and its relatively small apparent radius as viewed by spacecrafts near the Earth. Most satellites use solar power as a source of energy, and so need to make sure that solar panels are oriented correctly with respect to the sun. Also, some satellites have sensitive instruments that must not be exposed to direct sunlight. For all these reasons, sun sensors are important components in spacecraft attitude determination and control systems. To minimize components and structural mass, some components have multiple purposes. The solar cells will provide power and also be used as coarse sun sensors. A coarse Sun sensor is a low-cost attitude determination sensor suitable for a wide range of space missions. The sensor measures the sun angle in two orthogonal axes. The Sun sensor measures the sun angle in both azimuth and elevation. This paper presents the development of a model to determine the attitude of a small cube-shaped satellite in space relative to the sun's direction. This sensor helps small cube-shaped Pico satellites to perform accurate attitude determination without requiring additional hardware.

The Study Trend and Problems of Propulsion System in a Zero-gravity Environment (무중력 환경에서 추진기관의 문제점 및 연구 동향)

  • Kil, Gyoung-Sub;Lim, Ha-Young;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.573-576
    • /
    • 2010
  • The propulsion systems such as upper stages of launch vehicles, orbiters, spacecrafts have to operate in the zero gravity environment. Because the flight condition where the vehicle undergoes is different from the normal gravity state, many studies have been being in progress. Fluid behavior in the zero gravity condition is differently shown in the normal gravity state because the importance of the intermolecular force, such as adhesion, cohesion, and surface tension is enlarged. In this paper, we investigate the characteristic of fluid behavior and describe effects and problems on the liquid propulsion system due to these fluid behavior. We also check which studies are in progress in order to solve these problems.

  • PDF

Statistical analysis for the solar eruption effect on wireless communication (무선통신에 영향을 미치는 태양폭풍의 통계적 분석)

  • Park, Jae-Woo;Kim, Jung-Hoon;Han, Jin-Wook
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.107-111
    • /
    • 2011
  • In World War II, the solar eruption (solar flare) was revealed to make a significant effect to radar systems. The radio disturbance in February 28, 1942 was due to increased cosmic ray during solar maximum. Since such phenomena had been disclosed, many studies were accomplished on solar flare and solar particle event. Now various researches about the effects of solar flare on the spacecrafts, the airplanes flying across the pole, the radar systems, and wireless communication systems are studied. In this paper we analyzed the relationship between the harmful effect on the wireless communication by the solar eruption and the period of solar activity from the sunspot number data and the solar radio burst data for last 40 years.

Survey on a Research for Fire Safety in Space with the Understanding of Combustion Characteristics in Microgravity based on NASA's Space Research Program (NASA의 우주 연구 프로그램에 따른 미소 중력하에서의 연소 특성 및 화재 안전 연구 개괄)

  • Sohn, Chae-Hoon;Son, Young-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.65-72
    • /
    • 2007
  • Fire is one of important checkpoints in crewed exploration systems, where men inhabit in space. In space, astronaut can't escape from fire out of a spacecraft and not expect any help of fire fighters, either. Accordingly, the best way to stand against fire is to prevent it. But, when fire occurs in space, flame behaviors are quite different from those observed on earth because of micro- or zero-gravity in space. The present paper introduces major research results on flame behaviors under microgravity and fire prevention, detection, and suppression in crewed exploration spacecrafts and international space station based on NASA's FPDS research program.

Acquisition, Processing and Image Generation System for Camera Data Onboard Spacecraft

  • C.V.R Subbaraya Sastry;G.S Narayan Rao;N Ramakrishna;V.K Hariharan
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.94-100
    • /
    • 2023
  • The primary goal of any communication spacecraft is to provide communication in variety of frequency bands based on mission requirements within the Indian mainland. Some of the spacecrafts operating in S-band utilizes a 6m or larger aperture Unfurlable Antenna (UFA for S-band links and provides coverage through five or more S-band spot beams over Indian mainland area. The Unfurlable antenna is larger than the satellite and so the antenna is stowed during launch. Upon reaching the orbit, the antenna is deployed using motors. The deployment status of any deployment mechanism will be monitored and verified by the telemetered values of micro-switch position before the start of deployment, during the deployment and after the completion of the total mechanism. In addition to these micro switches, a camera onboard will be used for capturing still images during primary and secondary deployments of UFA. The proposed checkout system is realized for validating the performance of the onboard camera as part of Integrated Spacecraft Testing (IST) conducted during payload checkout operations. It is designed for acquiring the payload data of onboard camera in real-time, followed by archiving, processing and generation of images in near real-time. This paper presents the architecture, design and implementation features of the acquisition, processing and Image generation system for Camera onboard spacecraft. Subsequently this system can be deployed in missions wherever similar requirement is envisaged.

Vibration of bio-inspired laminated composite beams under varying axial loads

  • Tharwat Osman;Salwa A. Mohamed;Mohamed A. Eltaher;Mashhour A. Alazwari;Nazira Mohamed
    • Steel and Composite Structures
    • /
    • v.50 no.1
    • /
    • pp.25-43
    • /
    • 2024
  • In this article, a mathematical model is developed to predict the dynamic behavior of bio-inspired composite beam with helicoidal orientation scheme under variable axial load using a unified higher order shear deformation beam theory. The geometrical kinematic relations of displacements are portrayed with higher parabolic shear deformation beam theory. Constitutive equation of composite beam is proposed based on plane stress problem. The variable axial load is distributed through the axial direction by constant, linear, and parabolic functions. The equations of motion and associated boundary conditions are derived in detail by Hamilton's principle. Using the differential quadrature method (DQM), the governing equations, which are integro-differential equations are discretized in spatial direction, then they are transformed into linear eigenvalue problems. The proposed model is verified with previous works available in literatures. Parametric analyses are developed to present the influence of axial load type, orthotropic ratio, slenderness ratio, lamination scheme, and boundary conditions on the natural frequencies of composite beam structures. The present enhanced model can be used especially in designing spacecrafts, naval, automotive, helicopter, the wind turbine, musical instruments, and civil structures subjected to the variable axial loads.