• Title/Summary/Keyword: SpacePropulsion system

Search Result 354, Processing Time 0.027 seconds

Design of Path Tracking Controller Based on Thrusters for the Lunar Lander Demonstrator (달 착륙선 지상시험모델의 경로 추종을 위한 추력기 기반 제어기 설계)

  • Kim, Kwang-Jin;Lee, Jeong-Sook;Lee, Sang-Chul;Ko, Sang-Ho;Rhyu, Dong-Young;Ju, Gwang-Hyeok
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.4
    • /
    • pp.37-43
    • /
    • 2011
  • Lunar exploration program has been prepared with the aim of launch in the 2020's. As part of it, a lunar lander demonstrator has been developed which is the model for verifying all the system, such as structure, propulsion and control system before launch to deep space. After verifying all the system, the demonstrator will be evaluated by flight test. This paper deals with path tracking controller based on thrusters for the demonstrator. For this, first we derive equations of motion according to the allocation of thrusters and design the path tracking controller. The signal generated from the controller is continuous so PWPF(Pulse-Width Pulse-Frequency) modulator is adopted for generating on/off signal. Finally MATLAB simulation is performed for evaluating the path tracking ability and the final landing velocity.

Optimal Parametric Design of Coil Gun to Improve Muzzle Velocity (피투사체 속도 향상을 위한 코일건의 기구 변수 최적 설계)

  • Lee, Su-Jeong;Lee, Ju Hee;Lee, Dong Yeon;Seo, TaeWon;Kim, Jin Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.408-412
    • /
    • 2014
  • An electromagnetic launching system presents a viable projectile propulsion alternative with low cost and minimal environmental drawbacks. A coil gun system propels a projectile using an electromagnetic force and the system is mainly employed in military weapon systems and space launch systems. In this paper, we perform optimization design to improve the muzzle velocity by analyzing the sensitivity. The muzzle velocity, which is the most important design function variable, is affected by design variables including the number of axial turns in the electromagnetic coil, number of radial turns in the electromagnetic coil, initial distance between the projectile and the coil, inner radius of the electromagnetic coil, and length of the projectile. An orthogonal arrays matrix is configured, and a finite element analysis is performed utilizing the commercial electromagnetic analysis software MAXWELL. The muzzle velocity of the optimal design is 62.4% greater than that of the initial design.

Suppression of Zero Sequence Current Caused by Dead-time for Dual Inverter With Single Source (단전원 듀얼 인버터의 데드타임으로 인한 영상전류 억제 방법)

  • Yoon, Bum-Ryeol;Kim, Tae-Hyeong;Lee, June-Hee;Lee, June-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.2
    • /
    • pp.126-133
    • /
    • 2022
  • This study proposes a suppression of zero sequence current (ZSC), which is caused by zero sequence voltage (ZSV) for a dual two-level inverter with single DC bus. Large output voltages enable the dual inverter with single DC bus to improve a system efficiency compared with single inverter. However, the structure of dual inverter with single DC bus inevitably generates ZSC, which reduces the system efficiency and causes a current ripple. ZSV is also produced by dead time, and its magnitude is determined by the DC bus and current direction. This study presents a novel space vector modulation method that allows the instantaneous suppression of ZSC. Based on a condition where a switching period is twice a sampling (control) period, the proposed control method is implemented by injecting the offset voltage at the primary inverter. This offset voltage is injected in half of the switching period to suppress the ZSC. Simulation and experiments are used to compare the proposed and conventional methods to determine the ZSC suppression performance.

Analysis of X-Band Link Performance Degradation Caused by Adjacent Satellite

  • Park, Durk-Jong;Ahn, Sang-Il;Chun, Yong-Sik;Kim, Eun-Kyou
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.4
    • /
    • pp.299-304
    • /
    • 2011
  • As more satellites are designed to downlink their observed image data through the X-band frequency band, it is inevitable that the occupied bandwidth of a target satellite will overlap with that of other X-band downlink satellites. For sun-synchronized low earth orbit satellites, in particular, it can be expected that two or more satellites be placed within the looking angle of a ground station antenna at the same time. Due to the overlapping in the frequency band, signals transmitted from the adjacent satellites act as interferers, leading to degraded link performance between target satellite and ground station. In this paper, link analysis was initiated by modeling the radiation pattern of ground station antenna through a validated Jet Propulsion Laboratory peak envelope model. From the relative antenna gain depending on the offset angle from center axis of maximum antenna directivity, the ratio of received interference signal level to the target signal level was calculated. As a result, it was found that the degradation increased when the offset angle was within the first point of radiation pattern. For a 7.3 m antenna, serious link degradation began at an offset angle of 0.4 degrees. From this analysis, the link performance of the coming satellite passes can be recognized, which is helpful to establish an operating procedure that will prevent the ground station from receiving corrupted image data in the event of a degraded link.

Development and Flight Test of a Small Solar Powered UAV (소형 태양광 무인항공기의 개발 및 비행시험)

  • Ahn, Il-Young;Bae, Jae-Sung;Park, SangHyuk;Yang, Yong-Man
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.11
    • /
    • pp.908-914
    • /
    • 2013
  • This study has developed a small solar powered UAV and performed its flight tests. In daylight, a solar powered UAV flies by using some of electricity generated from solar cells, and stores the remainder into battery. At night it flies by using electricity from battery. A solar powered UAV should have aerodynamically efficient configurations, light-weight, strong wing and fuselage. Its electric propulsion system and solar power system should also be very efficient. In the present study the solar powered UAV and its solar power system are developed for 12 hour continuous flight and the flight tests are performed to verify its performance. The flight tests performed in fall and winter to prove the present solar powered UAV is successful in four-season 12 hour flight.

Conceptual Design of Electric-Pump Motor for 50kW Rocket Engine (50kW급 로켓 엔진용 전기펌프 모터의 개념 설계)

  • Kim, Hong-Kyo;Kwak, Hyun-Duck;Choi, Chang-Ho;Kim, Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.2
    • /
    • pp.175-181
    • /
    • 2018
  • Electric pump system is new technology for next generation propulsion unit. The system has simple structure which dose not need gas generator, injector and turbine and might better pump for low cost and low payload rocket. Therefore, this paper suggests conceptual design of electric-pump Permanent-Magnet Synchronous Motor (PMSM) which has 50 kW & 50,000 RPM for rocket. To satisfy the system's requirement, electromagnetic analysis is conducted for suitable inner and outer diameter of stator and rotor which uses 4000 Gauss cylinder magnet and Inconel 718 can to fix whole rotor. Futhermore, to confirm rotational vibration, rotordynamics analysis is conducted. By this analysis, Campbell diagram is printed. From the diagram, natural frequency could be determined for the only motor and dynamo meter test bench.

Energy Balance and Constraints for the Initial Sizing of a Solar Powered Aircraft (태양광 추진 항공기의 초기 사이징을 위한 에너지 균형 및 구속조건 연구)

  • Hwang, Ho-Yon;Nam, Tae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.6
    • /
    • pp.523-535
    • /
    • 2012
  • Solar powered aircraft are becoming more and more interesting for future long endurance missions at hight altitudes, because they could provide surveillance, earth monitoring, telecommunications, etc. without any atmospheric pollution and hopefully in the near future with competitive costs compared with satellites. However, traditional aircraft sizing methods currently employed in the conceptual design phase are not immediately applicable to solar powered aircraft. Hence, energy balance and constraint analyses were performed to determine how various power system components effect the sizing of a solar powered long endurance aircraft. The primary power system components considered in this study were photovoltaic (PV) modules for power generation and regenerative fuel cells for energy storage. To verify current research results, these new sizing methods were applied to HALE aircraft and results were presented.

Uncertainty Requirement Analysis for the Orbit, Attitude, and Burn Performance of the 1st Lunar Orbit Insertion Maneuver

  • Song, Young-Joo;Bae, Jonghee;Kim, Young-Rok;Kim, Bang-Yeop
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.323-333
    • /
    • 2016
  • In this study, the uncertainty requirements for orbit, attitude, and burn performance were estimated and analyzed for the execution of the $1^{st}$ lunar orbit insertion (LOI) maneuver of the Korea Pathfinder Lunar Orbiter (KPLO) mission. During the early design phase of the system, associate analysis is an essential design factor as the $1^{st}$ LOI maneuver is the largest burn that utilizes the onboard propulsion system; the success of the lunar capture is directly affected by the performance achieved. For the analysis, the spacecraft is assumed to have already approached the periselene with a hyperbolic arrival trajectory around the moon. In addition, diverse arrival conditions and mission constraints were considered, such as varying periselene approach velocity, altitude, and orbital period of the capture orbit after execution of the $1^{st}$ LOI maneuver. The current analysis assumed an impulsive LOI maneuver, and two-body equations of motion were adapted to simplify the problem for a preliminary analysis. Monte Carlo simulations were performed for the statistical analysis to analyze diverse uncertainties that might arise at the moment when the maneuver is executed. As a result, three major requirements were analyzed and estimated for the early design phase. First, the minimum requirements were estimated for the burn performance to be captured around the moon. Second, the requirements for orbit, attitude, and maneuver burn performances were simultaneously estimated and analyzed to maintain the $1^{st}$ elliptical orbit achieved around the moon within the specified orbital period. Finally, the dispersion requirements on the B-plane aiming at target points to meet the target insertion goal were analyzed and can be utilized as reference target guidelines for a mid-course correction (MCC) maneuver during the transfer. More detailed system requirements for the KPLO mission, particularly for the spacecraft bus itself and for the flight dynamics subsystem at the ground control center, are expected to be prepared and established based on the current results, including a contingency trajectory design plan.

An Experimental Study of Supersonic Underexpanded Jet Impinging on an Inclined Plate (경사 평판에 충돌하는 초음속 과소팽창 제트에 관한 실험적 연구)

  • 이택상;신완순;이정민;박종호;윤현걸;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.67-74
    • /
    • 1999
  • Problems created by supersonic jet impinging on solid objects or ground arise in a variety of situations. For example multi-stage rocket separation, deep-space docking, V/STOL aircraft, jet-engine exhaust, gas-turbine blade, terrestrial rocket launch, and so on. These impinging jet flows generally contain a complex structures. (mixed subsonic and supersonic regions, interacting shocks and expansion waves, regions of turbulent shear layer) This paper describes experimental works on the phenomena (surface pressure distribution, flow visualization) when underexpanded supersonic jets impinge on the perpendicular, inclined plate using a supersonic cold-(low system. The used supersonic nozzle is convergent-divergent type, exit Mach number 2, The maximum on the plate when it was inclined was much larger than perpendicular plate, owing to high pressure recoveries through multiple shocks. Surface pressure distribution as to underexpanded ratio showed similar patterns together.

  • PDF

Fuel-Side Cold-Flow Test and Pressure Drop Analysis on Technology Demonstration Model of 75 ton-class Regeneratively-Cooled Combustion Chamber (75톤급 재생냉각 연소기 기술검증시제 연료 수류시험 및 차압 해석)

  • Ahn, Kyu-Bok;Kim, Jong-Gyu;Lim, Byoung-Jik;Kim, Mun-Ki;Kang, Dong-Hyuk;Kim, Seong-Ku;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.807-812
    • /
    • 2011
  • Fuel-side cold-flow tests were performed on the technology demonstration model of a 75 ton-class liquid rocket engine combustion chamber for the first stage of the Korea space launch vehicle II. Pressure drop in the cooling channels of the combustion chamber was measured by changing fuel mass flow rate through a pressure regulating system. Pressure drop in each segment of the chamber could be obtained and a lot of pressure drop was caused by high flow velocity in the nozzle throat segment. The accuracy of a hydraulic analysis method for calculating a pressure loss in cooling channels could be verified by applying it to the cold-flow test conditions.

  • PDF