• Title/Summary/Keyword: SpacePropulsion system

Search Result 354, Processing Time 0.063 seconds

Comparison of Thrust Measurement of a Supersonic Wind Tunnel (초음속 풍동의 추력 측정 방법 비교)

  • Heo, Hwan Il;Kim, Hyeong Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.93-99
    • /
    • 2003
  • The determination of thrust is essential in design and evaluation of a hypersonic airbreathing propulsion device. Conventional methods to determine the thrust is using thrust stand or force measurement system. However, these conventional methos are not applicable to the case where thrusts stands are impractical, such as free jet testing of engines, and model combustor. For this reason, the thrust determination method from measured pitot pressure is considered and validated. Validation of thrust determination from pitot pressures can be achieved by comparing the actual thrust from thrust stand. For validation purpose, a small-scale supersonic wind tunnel is installed on the thrust stand. Thrusts are measured while pressures are measured simulaneously. Then, the thrust from pitot pressure measurements are compared with the measured thrust and theoretical thrusts.

Characteristics and Key Parameters of Dual Bell Nozzles of the DLR, Germany (독일 DLR의 듀얼 벨 노즐 특성 및 핵심 변수)

  • Kim, Jeonghoon;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.952-962
    • /
    • 2015
  • Various types of altitude compensation nozzles have been investigated to develop an effective propulsion system. In order to obtain baseline data for future study of dual bell nozzles, main characteristics and key parameters of dual bell nozzles are summarized and described by analysing DLR dual bell nozzles. DLR's experimental researches show that inflection angle is proportional to transition NPR, and extension length is proportional to side load, but inversely proportional to transition NPR and transition duration. Therefore, the nozzle geometry can be determined through the performance prediction process and thus the optimization process is required to meet performance requirements between parameters.

A Study on Multi-Fault Diagnosis for Turboshaft Engine of UAV Using Fuzzy and Neural Networks (퍼지 및 신경망을 이용한 무인 항공기용 터보축 엔진의 다중손상진단에 관한 연구)

  • Kong, Chang-Duk;Ki, Ja-Young;Kho, Seong-Hee;Koo, Young-Ju;Lee, Chang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.556-561
    • /
    • 2009
  • The UAV(Unmanned Aerial Vehicle) that is remotely operating in various and long flight environments must have a very reliable propulsion system. Precise fault diagnosis of the turbo shaft engine for the Smart UAV that has the vertical take-off, landing and forward flight behaviors can promote reliability and availability. This work proposes a new diagnostic method that can identify the faulted components from engine measuring parameter changes using Fuzzy Logic and quantify its faults from the identified fault pattern using Neural Network Algorithms. The proposed diagnostic method can detect not only single fault but also multiple faults.

Conceptual Configuration Design of Short Range Ballistic Missiles by Using Multidisciplinary Design Optimization Approach (다분야 설계 최적화 기법을 이용한 단거리 탄도 미사일의 초기형상 설계)

  • Jin, Jaehyun;Han, Duhee;Jin, Jaehoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.3
    • /
    • pp.228-239
    • /
    • 2019
  • In order to design the conceptual configuration of the short-range ballistic missile, the authors have established an optimization problem considering various aspects such as volume, aerodynamics, propulsion, structure, stability, and flight trajectory. For this purpose, the existing missile cases were analyzed and the design conditions and performance indices were derived. The performance of the whole system was analyzed by integrating each subsystem's model. Through the design example, we analyzed the relationship between various design variables and final performances.

Gas Leakage Condition and CFD analysis on Gas Fuelled ship FGS system (Gas Fuelled Ship FGS 시스템에 대한 가스누출 조건 검토 및 CFD 해석)

  • Kim, Ki-Pyoung;Kang, Ho-Keun;Park, Jae-Hong;Choung, Choung-Ho
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.06a
    • /
    • pp.7-10
    • /
    • 2011
  • According to the requirement of Res.MSC.285(86) for natural gas-fueled engine installations in ships, pump and compressor rooms should be fitted with effective mechanical ventilation system of the under pressure type, providing a ventilation capacity of at least 30 air changes per hour. It generally considered that gas leakage is more likely from a Fueled Gas Supply System(FGS) room as compared to other places, where installed in many kind of machinery or equipments like gas supply high-pressure pipes, valves, flanges and etc. Furthermore, leaked gas may be dispersed in a short time in an enclosed space, especially a FGS room, due to high pressure. However, the present requirement in Res.MSC.285(86) just considers the ventilating capacity of air changes per hour but the capacity of leaked gas. Hence, the current requirements may not meet effectively when enforcing the new propulsion systems as marine fuel. This study is conducted for the purpose of safety evaluation about the dispersion and ventilation efficiency with estimated leakage scenario. Numerical analysis predictions as the result of this paper are explained to know the features of flow pattern and the diffusion of natural gas concentration.

  • PDF

Computational Investigation of the Effect of UAV Engine Nozzle Configuration on Infrared Signature (무인항공기 노즐 형상 변화에 따른 IR 신호 영향성 연구)

  • Kang, Dong-Woo;Kim, June-Young;Myong, Rho-Shin;Kim, Won-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.10
    • /
    • pp.779-787
    • /
    • 2013
  • The effects of various nozzle configurations on infrared signature are investigated for the purpose of analysing the infrared signature level of aircraft propulsion system. A virtual subsonic aircraft is selected and then a circular convergent nozzle, which meets the mission requirements, is designed. Convergent nozzles of different configurations are designed with different geometric profiles. Using a compressible Navier-Stokes-Fourier CFD code, an analysis of thermal flow field and nozzle surface temperature distribution is conducted. From the information of plume flow field and nozzle surface temperature distribution, IR signature of plume and nozzle surface is calculated through the narrow-band model and the RadThermIR code. Finally, qualitative information for IR signature reduction is obtained through the analysis of the effects of various nozzle configurations on IR signature.

Performance Analysis of the Satellite Monopropellant Hydrazine Thruster (인공위성 단일추진제 하이드라진 추력기 성능 해석)

  • Han C. Y.;Park T. S.;Lee K. H.;Yu M. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.137-139
    • /
    • 2004
  • The monopropellant hydrazine thrusters are widely used for the satellite on-board propulsion system fulfilling various missions in space. They have outstanding features caused by the nearly unlimited restart capability and the very high credibility. The sole monopropellant thruster used at precent in nation is MRE-1 that is a standard component of NASA. It can produce 4.45 N of nominal thrust. Due to the glowing complexity with a satellite mission, the needs for thrusters of the diverse performance are being increased. The numerical simulation could give useful information to develop a new type thruster instead of the experiments performed previously. Therefore it is critical to make a reliable computer code to prepare design change of a thruster. In this paper, the performance analysis and validation of the satellite monopropellant hydrazine thruster currently used is accomplished as the preliminary study to serve valuable data for future design change.

  • PDF

Study About a New Propulsion System Using CRP( I ) (Flow interaction mechanism of a counter-rotating propeller) (CRP를 사용한 추진기관에 관한 연구( I ) (CRP의 유동상호작용에 관하여))

  • 정진덕;이동호
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.1
    • /
    • pp.3-8
    • /
    • 1995
  • The anemometer measurements were obtained from stationary hot-film probe mounted between the forward and rear rotors of a model CRP which rotated the forward and different directions. Data collection was done at several locations between rotors. To establish rotor-rotor interaction flow mechanism that contributes noise increasement of the CRP, methods of simple and the double condition-at sampling have been developed. The former uses to find similarity of the wake the later fixes the forward rotor position in time or space and permits averaging the mean wake at any fixed rotor angular location. The variation of the forward wake Is strongly depending upon the rear rotor location.

  • PDF

An Analysis on Policy Trends of the Use and Development of Nuclear Power in Nuclear Advanced Countries (주요국의 원자력이용개발 정책동향 분석)

  • 차종희;조흥곤;양맹호
    • Journal of Korea Technology Innovation Society
    • /
    • v.6 no.4
    • /
    • pp.462-479
    • /
    • 2003
  • The policy trends of use and the development of nuclear power in the United States, France, United Kingdom. Germany, Russia, China, Japan and Korea are briefly investigated. Nuclear power technology has been developed as the national policy in the nuclear-advanced countries. 50 years has passed since the declaration of "Atoms for Peace" by USA President Eisenhour in December 1953. Recently, it appears to revitalize the nuclear power program in world major countries in order to recover the shortage of electric power and to curb the excess emission of carbon dioxide as well as to secure competitiveness in electricity markets. Advanced countries are making new initiatives for the development of the fourth generation nuclear power system. Furthermore, wide-ranged use and development of nuclear power technologies are expected in district heating in commercial sectors, power in the space exploration, and propulsion power of large tankers and spaceships. High temperature gas cooled nuclear power reactor will be applied for mass production of hydrogen energy in the future.

  • PDF

Performance Evaluation of Components of Micro Solid Propellant Thruster (마이크로 고체 추진제 추력기 요소의 성능 평가)

  • Lee, Jong-Kwang;Lee, Dae-Hoon;Kwon, Se-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1280-1285
    • /
    • 2004
  • Microsystem technology has been applied to space technology and became one of the enabling technology by which low cost and high efficiency are achievable. Micro propulsion system is a key technology in the miniature satellite because micro satellite requires very small and precise thrust force for maneuvering and attitude control. In this paper research on micro solid propellant thruster is reported. Micro solid propellant thruster has four basic components; micro combustion chamber, micro nozzle, solid propellant and micro igniter. In this research igniter, solid propellant and combustion chamber are focused. Micro igniter was fabricated through typical micromachining and evaluated. The characteristic of solid propellant was investigated to observe burning characteristic and to obtain burning velocity. Change of thrust force and the amount of energy loss following scale down at micro combustion chamber were estimated by numerical simulation based on empirical data and through the calculation normalized specific impulses were compared to figure out the efficiency of combustion chamber.

  • PDF