• Title/Summary/Keyword: SpacePropulsion system

Search Result 354, Processing Time 0.024 seconds

Characterization of the space propulsion system with a helicon plasma source (헬리콘 플라즈마 원을 이용한 우주 추진체의 특성)

  • Choi, Geun-Sig;Woo, Hyun-Jong;Chung, Kyu-Sun;Lee, Myoung-Jae;Lho, Tai-Hyeop;Jung, Yong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.93-95
    • /
    • 2005
  • VASIMR (Variable Specific Impulse Magnetoplasma Rocket: JSC, NASA)의 개념을 바탕으로 하는 K2H (KBSI-KAIST-Hanyang University)라고 이름 붙여진 우주 추진체 모사장치 (Space Propulsion Simulator)를 개발하였다. 이 장치는 헬리콘 플라즈마 소스, 이온 가열부 (ICRH: Ion Cyclotron Resonance Heating), 자기노즐 부분으로 이루어져 있다. 헬리콘 플라즈마 소스는 m=+1 형태의 Right-helical 안테나를 사용하여 발생하였다. 본 연구에서는 K2H 장치의 기본적인 설계 개념 및 초기에 발생한 헬리콘 플라즈마의 물성을 RF 보상탐침을 이용하여 측정하였다. 그 결과 900 W, 13.56 MHz rf파워를 사용하여, 아르곤 7 mTorr하에서 전자밀도 = $10^{12}-10^{13}cm-3$, 전자온도 = 4-6 eV의 헬리콘 플라즈마를 안정적으로 발생시켰다.

  • PDF

Development Status of High Enthalpy Plasma Equipment (전북대 고온플라즈마 설비 구축 및 응용연구 소개)

  • Choi, Chea-Hong;Lee, Mi-Yun;Kim, Min-Ho;Hong, Bong-Guen;Seo, Jun-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.694-696
    • /
    • 2011
  • The high enthalpy plasma research center in Chonbuk national university is under construction for four types of plasma equipments. The equipments are 1set of 0.4 MW class enhanced Huels type plasma equipment, 1 set of 2.4 MW class enhanced Huels type plasma quipment, 1 set of 60 kW RF plasma equipment and 1 set of 200 kW RF plasma equipment. 60kW RF plasma system is R&D and pilot scale production equipment of nano powder synthesis and plasma spray coating. 200kW RF plasma system is mass production equipment with high power capacity of nano powder synthesis. 0.4MW plasma system can be applied to the ground test facility for material testing under re-entry conditions for space vehicles.

  • PDF

A Comparative Study of Frequency Response Models for Pressure Transmission System (압력전달시스템을 위한 주파수응답모델들의 비교 연구)

  • Kim, Hyeonjun;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.2
    • /
    • pp.83-93
    • /
    • 2020
  • Dynamic pressure transducer needs to be flush-mounted on hardware due to frequency response characteristics of pressure transmission system. However, it is sometimes necessary to be mounted in recessed configuration due to insufficient space for sensor installation and for protection of sensor from thermal damage. Dynamic response characteristics should be considered due to distortion of original dynamic pressure signal in the pressure transmission system. In this study, small perturbation model and 2nd order reduced model were compared with experiments and a guideline for selecting a frequency response model was suggested.

Recent Progress in R&D and Prospect of Divert and Attitude Control System(DACS) (궤도천이 및 자세제어 시스템의 연구개발 동향과 전망)

  • Kim, Seongsu;Huh, Hwanil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.62-72
    • /
    • 2012
  • Divert and attitude control system(DACS) plays an important role for orbit transfer and attitude control, and therefore becomes important subject for recent space vehicle and Precision Guided Missile(PGM) development. To develop DACS system, main research areas include shape combination of pintle and nozzle to maximize thrust change, and reduction of aerodynamic pintle load to minimizle pintle driving force, and development of multi-axis control algorithm. In this paper, introduction, classification, and overseas/domestic research and development program, and prospects of DACS are reviewed and summarized.

Comparison of Results for Filling Operation of Liquid Oxygen Filling System in KSLV-I Flight Test and Critical Design Results in KSLV-II Launch Complex for Validation (한국형발사체 발사대시스템 산화제공급계 충전 운용 설계의 검증을 위한 나로호 비행시험 실증 자료 분석)

  • Seo, Mansu;Lee, Jae Jun;Hong, Il-gu;Kang, Sunil
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.14-20
    • /
    • 2017
  • In this paper, KSLV-I flight test data and critical design results of filling operation for liquid oxygen filling system are compared to validate the reliability of the critical design modeling. Applying the filling and operation conditions on the critical design modeling, comparison of major flow rates and pressure values between test data and calculation results are conducted.

  • PDF

Development of Technological Equipment Power Supply System in KSLV-II Launch Complex (한국형발사체 발사대시스템 지상장비전원공급계 개발)

  • Moon, Kyungrok;An, Jaechel;Jung, Ilhyung;Hong, IIhee;Kang, Sunil
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.36-40
    • /
    • 2017
  • The launch operation for a space launch vehicle(SLV) is to be conducted by the systematic operation between SLV and the Technological Equipment(TE) such as the mechanical, fuel, and electrical ground support equipment at launch complex(LC). The basic source for the operation of the instruments in LC is the electrical power supply system, Technological Equipment Power Supply System(TEPSS), which is one of the Launch Control System. Thus TEPSS should supply the required electrical power to TE with reliability. In this paper, TEPSS which supplies operational electrical power to TE is introduced.

  • PDF

Development Study of A Precooled Turbojet Engine for Flight Demonstration

  • Sato, Tetsuya;Taguchi, Hideyuki;Kobayashi, Hiroaiki;Kojima, Takayuki;Fukiba, Katsuyoshi;Masaki, Daisaku;Okai, Keiichi;Fujita, Kazuhisa;Hongoh, Motoyuki;Sawai, Shujiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.109-114
    • /
    • 2008
  • This paper presents the development status of a subscale precooled turbojet engine "S-engine" for the hypersonic cruiser and space place. S-engine employs the precooled-cycle using liquid hydrogen as fuel and coolant. It has $23cm{\times}23cm$ of rectangular cross section, 2.6 m of the overall length and about 100 kg of the target weight employing composite materials for a variable-geometry rectangular air-intake and nozzle. The design thrust and specific impulse at sea-level-static(SLS) are 1.2 kN and 2,000 sec respectively. After the system design and component tests, a prototype engine made of metal was manufactured and provided for the system firing test using gaseous hydrogen in March 2007. The core engine performance could be verified in this test. The second firing test using liquid hydrogen was conducted in October 2007. The engine, fuel supplying system and control system for the next flight test were used in this test. We verified the engine start-up sequence, compressor-turbine matching and performance of system and components. A flight test of S-engine is to be conducted by the Balloon-based Operation Vehicle(BOV) at Taiki town in Hokkaido in October 2008. The vehicle is about 5 m in length, 0.55 m in diameter and 500 kg in weight. The vehicle is dropped from an altitude of 40 km by a high-altitude observation balloon. After 40 second free-fall, the vehicle pulls up and S-engine operates for 60 seconds up to Mach 2. High altitude tests of the engine components corresponding to the BOV flight condition are also conducted.

  • PDF

Numerical Study of Chemical Reaction for Liquid Rocket Propellant Using Equilibrium Constant (평형상수를 이용한 액체로켓 추진제의 화학반응 수치연구)

  • Jang, Yo Han;Lee, Kyun Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.333-342
    • /
    • 2016
  • Liquid rocket propulsion is a system that produces required thrust for satellites and space launch vehicles by using chemical reactions of a liquid fuel and a liquid oxidizer. Monomethylhydrazine/dinitrogen tetroxide, liquid hydrogen/liquid oxygen and RP-1/liquid oxygen are typical combinations of liquid propellants commonly used for the liquid rocket propulsion system. The objective of the present study is to investigate useful design and performance data of liquid rocket engine by conducting a numerical analysis of thermochemical reactions of liquid rocket propellants. For this, final products and chemical compositions of three liquid propellant combinations are calculated using equilibrium constants of major elementary equilibrium reactions when reactants remain in chemical equilibrium state after combustion process. In addition, flame temperature and specific impulse are estimated.

Study on the Propellant Position for the Decrease of the Differential Pressure in the Interior Ballistics of a Gun Propulsion System (강내탄도 내 차압 감소를 위한 추진제 위치 연구)

  • Jang, Jin-Sung;Sung, Hyung-Gun;Roh, Tae-Seong;Choi, Dong-Whan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.1
    • /
    • pp.72-78
    • /
    • 2012
  • The position effect of the solid propellant in the combustion chamber on the decrease of the differential pressure has been investigated using the IBcode. Generally the metallic cartridge or CCC (combustible cartridge case) are used to load the propellant of the gun propulsion system. The position of the cartridge(propellant) is, therefore, a major factor for the interior ballistics in case the combustion chamber is larger than the cartridge. In this study, three different positions in the empty space of the chamber have been considered. As results, the case of the propellant located in the region near the base and breech has shown that the negative differential pressure and the difference between the breech pressure and the base pressure are much higher than those of the case of the propellant located in the center of the chamber. The case of the propellant in the center of the chamber is, therefore, more profitable to improve the performance of the interior ballistics.

Liquid Rocket Engine System of Korean Launch Vehicle (한국형발사체 액체로켓엔진 시스템)

  • Cho, Won-Kook;Park, Soon-Young;Moon, Yoon-Wan;Nam, Chang-Ho;Kim, Chul-Woong;Seol, Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.1
    • /
    • pp.56-64
    • /
    • 2010
  • A system design has been conducted of the liquid rocket engine for Korean launch vehicle (KSLV-II, Korea Space Launch Vehicle II). The present turbopump-fed liquid rocket engine of vacuum thrust 76 ton and vacuum specific impulse 297 sec adopts gas generator cycle. The combustion pressure of the regeneratively cooled combustor is 60 bar. The propellant is LOx/kerosene. The engine is started by pyrostarter and the combustor is ignited by TEA (TriEthylAluminium). The engine system performance and the subsystems performance requirements are given through energy balance analysis. The combustion pressure, specific impulse and the engine mass are analyzed to be reasonable comparing with the published data. The startup analysis method which will be used in the future has been validated against the turbopump-gas generator coupled test. The tuning method for performance variation of the engine which is not actively controled has been prepared by mode analysis and performance deviation analysis.