• Title/Summary/Keyword: Space-time decoder

Search Result 59, Processing Time 0.027 seconds

Differential space-time coded OFDM using multiple symbol decoding (다중 심벌 디코딩을 이용한 차동 시공간 부호화된 OFDM)

  • Yoo Hang-Youal;Kim Seung-Youal;Kim Chong-Il
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.3 no.1 s.4
    • /
    • pp.117-125
    • /
    • 2004
  • Space-time coding and modulation exploit the presence of multiple transmit antennas to improve performance on multipath Rayleigh fading channels. In this paper, we propose the Trellis-Coded Differential Space Time Modulation-OFDM system with multiple symbol detection. The Trellis-code perform the set partition with unitary group codes. The Viterbi decoder containing new branch metrics is introduced in order to improve the bit error rate (BER) in the differential detection of the Unitary differential space time modulation. Also, we describe the Viterbi algorithm in order to use this branch metrics. Our study shows that such a Viterbi decoder improves BER performance without sacrificing bandwidth and power efficiency.

  • PDF

Improved Differential Detection Scheme of Space-Time Trellis Coded MDPSK For MIMO (MIMO에서 시공간 부호화된 MDPSK의 성능을 향상시키기 위한 차동 검파 시스템)

  • Kim, Chong-Il;Lee, Ho-Jin;Yoo, Hang-Youal;Kim, Jin-Yong;Kim, Seung-Youal
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.10
    • /
    • pp.1869-1876
    • /
    • 2006
  • Recently, STC techniques have been considered to be candidate to support multimedia services in the next generation mobile radio communications and have been developed the many communications systems in order to achieve the high data rates. In this paper, we Nose the Trellis-Coded Differential Space Time Modulation system with multiple symbol detection. The Trellis-code performs the set partition with unitary group codes. The Viterbi decoder containing new branch metrics is introduced in order to improve the bit error rate (BER) in the differential detection of the unitary differential space time modulation. Also, we describe the Viterbi algorithm in order to use this branch metrics. Our study shows that such a Viterbi decoder improves BER performance without sacrificing bandwidth and power efficiency.

Multiple Symbol Detection of Trellis coded Differential space-time modulation for OFDM (OFDM에서 트렐리스 부호화된 차동 시공간 변조의 다중 심벌 검파)

  • 유항열;한상필;김진용;김성열;김종일
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.3
    • /
    • pp.223-229
    • /
    • 2004
  • Recently, OFDM and STC techniques have been considered to be candidate to support multimedia services in the next generation mobile radio communications and have been developed the many communications systems in order to achieve the high data rates. In this paper, we propose the Trellis-Coded Differential Space Time Modulation-OFDM system with multiple symbol detection. The Trellis-code performs the set partition with unitary group codes. The Viterbi decoder containing new branch metrics is introduced in order to improve the bit error rate (BER) in the differential detection of the unitary differential space time modulation. Also, we describe the Viterbi algorithm in order to use this branch metrics. Our study shows that such a Viterbl decoder improves BER performance without sacrificing bandwidth and power efficiency.

  • PDF

Design of Variable Data Transfer Rate Asymmetric TDD System Using Turbo Decoder with Double Buffer Controller (이중 버퍼 제어기 구조의 터보 복호기를 사용한 전송률 가변 비대칭 TDD 시스템 설계)

  • Park, Byeung-Kwan;Kim, Mi-Rae;Kim, Hyo-Jong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.2
    • /
    • pp.161-168
    • /
    • 2019
  • This paper proposes a variable data transfer asymmetric TDD(Time Division Duplex) system for small UAV(Unmanned Aerial Vehicle) data link system. In the proposed method, a turbo decoder with a double buffer controller is proposed to apply turbo decoder with long decoding time to asymmetric TDD system. The proposed method achieves variable data transfer rate and maximum data transfer rate. The advantage of the proposed method is demonstrated by its data transfer rate. The measured data transfer rate is more than 1.8 times than that of symmetric TDD system. In addition, PER(Packet Error Rate) performance is the same and data transfer rate is variable.

A Study on Turbo Equalization for MIMO Systems Based on LDPC Codes (MIMO 시스템에서 LDPC 부호 기반의 터보등화 방식 연구)

  • Baek, Chang-Uk;Jung, Ji-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.5
    • /
    • pp.504-511
    • /
    • 2016
  • In this paper, MIMO system based on turbo equalization techniques which LDPC codes were outer code and space time trellis codes (STTC) were employed as an inner code are studied. LDPC decoder and STTC decoder are connected through the interleaving and de-interleaving that updates each other's information repeatedly. In conventional turbo equalization of MIMO system, BCJR decoder which decodes STTC coded bits required two-bit wise decoding processing. Therefore duo-binary turbo codes are optimal for MIMO system combined with STTC codes. However a LDPC decoder requires bit unit processing, because LDPC codes can't be applied to these system. Therefore this paper proposed turbo equalization for MIMO system based on LDPC codes combined with STTC codes. By the simulation results, we confirmed performance of proposed turbo equalization model was improved about 0.6dB than that of conventional LDPC codes.

A Study on layered Space Time Trellis codes for MIMO system based on Iterative Decoding Algorithm (MIMO 시스템에서 반복 복호 알고리즘 기반의 계층적 시공간 부호화 방식 연구)

  • Park, Tae-Doo;Jung, Ji-Won
    • Journal of Navigation and Port Research
    • /
    • v.36 no.10
    • /
    • pp.845-849
    • /
    • 2012
  • The next-generation wireless communication requires fast transmission speeds with various services and high reliability. In order to satisfy these needs we study MIMO system used layered space time coded system (LST) combining space time trellis codes (STTC) with turbo codes. In LST, two codes that are inner and outer codes are concatenated in the serial fashion. The inner codes are turbo Pi codes suggested in DVB-RCS NG system, and outer codes are STTC codes proposed by Blum. The interleaver technique is used to efficiently combine two codes. And we proposed and simulated that a full iteration method between turbo decoder and BCJR decoder to improve the performance instead of only processing inner-iteration turbo decoder. The simulation results of proposed effective layered method show improving BER performance about 1.3~1.5dB than conventional one.

Real-Time Implementation of MPEG-1 Audio decoder on ARM RISC (ARM RISC 상에서의 MPEG-1 Audio decoder의 실시간 구현)

  • 김선태
    • Proceedings of the IEEK Conference
    • /
    • 2000.11d
    • /
    • pp.119-122
    • /
    • 2000
  • Recently, many complex DSP (Digital Signal Processing) algorithms have being realized on RISC CPU due to good compilation, low power consumption and large memory space. But, real-time implementation of multiple DSP algorithms on RISC requires the minimum and efficient memory usage and the lower occupancy of CPU. In this thesis, the original floating-point code of MPEG-1 audio decoder is converted to the fixed-point code and then optimized to the efficient assembly code in time-consuming function in accord with RISC feature. Finally, compared with floating-point and fixed-point, about 30 and 3 times speed enhancements are achieved respectively. And 3~4 times memory spaces are spared.

  • PDF

Improved Differential Detection Scheme of Space Time Trellis Coded MDPSK For MIMO (MIMO에서 시공간 부호화된 MDPSK의 성능을 향상시키기 위한 차동 검파 시스템)

  • Kim, Chong-Il;Lee, Ho-Jin;Yoo, Hang-Youal;Kim, Jin-Yong;Kim, Seung-Youal
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.164-167
    • /
    • 2005
  • Recently, STC techniques have been considered to be candidate to support multimedia services in the next generation mobile radio communications and have been developed the many communications systems in order to achieve the high data rates. In this paper, we propose the Trellis-Coded Differential Space Time Modulation system with multiple symbol detection. The Trellis-code performs the set partition with unitary group codes. The Viterbi decoder containing new branch metrics is introduced in order to improve the bit error rate (BER) in the differential detection of the unitary differential space time modulation. Also, we describe the Viterbi algorithm in order to use this branch metrics. Our study shows that such a Viterbi decoder improves BER performance without sacrificing bandwidth and power efficiency.

  • PDF

Low-Complexity Maximum-Likelihood Decoder for VBLAST-STBC Scheme Using Non-square OSTBC Code Rate 3/4

  • Pham Van-Su;Le Minh-Tuan;Mai Linh;Yoon Gi-Wan
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.2
    • /
    • pp.75-78
    • /
    • 2006
  • This work presents a low complexity maximum-likelihood decoder for signal detection in VBLAST-STBC system, which employs non-square O-STBC code rate 3/4. Stacking received symbols from different symbol duration and applying QR decomposition result in the special format of upper triangular matrix R so that the proposed decoder is able to provide not only ML-like BER performance but also very low computational load. The low computational load and ML-like BER performance properties of the proposed decoder are verified by computer simulations.

Low Complexity Maximum-likelihood Decoder for VBLAST-STBC scheme using non-square O-STBC code rate $\frac{3}{4}$

  • Pham Van-Su;Le Minh-Tuan;Mai Linh;Yoon Gi-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.107-110
    • /
    • 2006
  • This work presents a low complexity maximum-likelihood decoder for signal detection in VBLAST-STBC system, which employs non-square O-STBC code rate 3/4. By stacking received symbols from different received symbolduration and applying QR decomposition resulting the special format of upper triangular matrix R, the proposed decoder is able to provide not only ML-like BER performance but also very low computational load. The low computational load and ML-like BER performance properties of the proposed decoder are verified by computer simulations.

  • PDF