• Title/Summary/Keyword: Space-time codes

Search Result 180, Processing Time 0.027 seconds

Novel High-Rate High-Performance Space-Time Codes

  • Le, Minh-Tuan;Linh Mai;Pham, Van-Su;Yoon, Gi-Wan
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.2
    • /
    • pp.67-70
    • /
    • 2004
  • In this paper, we propose two novel high-rate high-performance space-time codes for multiple-input multiple-output (MIMO) systems. When $n_T$ transmit antennas and When $n_R$ = When $n_T$ receive antennas are deployed, the two proposed codes respectively offer transmission rates of (When $n_T$ -1) and (When $n_T$ -2) symbols per channel use and diversity orders of 3 and 5. As a consequence, our proposed codes allow the MIMO systems to employ a simple detection technique based on QR decomposition. Moreover, for equal or even higher spectral efficiencies, our proposed codes always provide much better bit error rate (BER) performances than V-BLAST architecture does when When $n_R$ = When $n_T$. Computer simulation is given to verify performances of our proposed codes.

BER Performance Analysis of Linear Orthogonal Space-Time Block Codes with Quadrature Amplitude Modulation in Quasi Static Rayleigh Fading Channel (QAM 변조방식을 갖는 선형 직교 시공간 블록 부호의 준정지 레일리 페이딩 채널에서의 비트 오율 성능 분석)

  • Kim Sang-Hyo;Yang Jae-Dong;No Jong-Seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6C
    • /
    • pp.575-581
    • /
    • 2006
  • In this paper, we first define one-dimensional component symbol error function (ODSEF) from the exact expression of the pairwise error probability of orthogonal space-time block codes (OSTBC). Using the ODSEF and the general bit error probability (BEP) expression for quadrature amplitude modulation (QAM) introduced by Cho and Yoon, the exact closed form expressions for the BEP of linear OSTBCs with QAM in slow-varying Rayleigh fading channel are derived.

Additional degree of freedom in phased-MIMO radar signal design using space-time codes

  • Vahdani, Roholah;Bizaki, Hossein Khaleghi;Joshaghani, Mohsen Fallah
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.640-649
    • /
    • 2021
  • In this paper, an additional degree of freedom in phased multi-input multi-output (phased-MIMO) radar with any arbitrary desired covariance matrix is proposed using space-time codes. By using the proposed method, any desired transmit covariance matrix in MIMO radar (phased-MIMO radars) can be realized by employing fully correlated base waveforms such as phased-array radars and simply extending them to different time slots with predesigned phases and amplitudes. In the proposed method, the transmit covariance matrix depends on the base waveform and space-time codes. For simplicity, a base waveform can be selected arbitrarily (ie, all base waveforms can be fully correlated, similar to phased-array radars). Therefore, any desired covariance matrix can be achieved by using a very simple phased-array structure and space-time code in the transmitter. The main advantage of the proposed scheme is that it does not require diverse uncorrelated waveforms. This considerably reduces transmitter hardware and software complexity and cost. One the receiver side, multiple signals can be analyzed jointly in the time and space domains to improve the signal-to-interference-plus-noise ratio.

New Design for Linear Complex Precoding over ABBA Quasi-Orthogonal Space-Time Block Codes

  • Ran, Rong;Yang, Jang-Hoon;An, Chan-Ho;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12C
    • /
    • pp.1062-1067
    • /
    • 2008
  • ABBA codes, a class of quasi-orthognal space-time block codes (QoSTBC) proposed by Tirkkonen and others, allow full rate and a fast maximum likelihood (ML) decoding, but do not have full diversity. In this paper, a linear complex precoder is proposed for ABBA codes to achieve full rate and full diversity. Moreover, the same diversity produce as that of orthogonal space-time block code with linear complex precoder (OSTBC-LCP) is achieved. Meanwhile, the size of the linear complex precoder can be reduced by half without affecting performance, which means the same complexity of decoding as that of the conventional ABBA code is guaranteed.

A Study on layered Space Time Trellis codes for MIMO system based on Iterative Decoding Algorithm (MIMO 시스템에서 반복 복호 알고리즘 기반의 계층적 시공간 부호화 방식 연구)

  • Park, Tae-Doo;Jung, Ji-Won
    • Journal of Navigation and Port Research
    • /
    • v.36 no.10
    • /
    • pp.845-849
    • /
    • 2012
  • The next-generation wireless communication requires fast transmission speeds with various services and high reliability. In order to satisfy these needs we study MIMO system used layered space time coded system (LST) combining space time trellis codes (STTC) with turbo codes. In LST, two codes that are inner and outer codes are concatenated in the serial fashion. The inner codes are turbo Pi codes suggested in DVB-RCS NG system, and outer codes are STTC codes proposed by Blum. The interleaver technique is used to efficiently combine two codes. And we proposed and simulated that a full iteration method between turbo decoder and BCJR decoder to improve the performance instead of only processing inner-iteration turbo decoder. The simulation results of proposed effective layered method show improving BER performance about 1.3~1.5dB than conventional one.

Error Control Coding and Space-Time MMSE Multiuser Detection in DS-CDMA Systems

  • Hamouda, Walaa;McLane, Peter J.
    • Journal of Communications and Networks
    • /
    • v.5 no.3
    • /
    • pp.187-196
    • /
    • 2003
  • We consider the use of error control coding in direct sequence-code-division multiple access (OS-COMA) systems that employ multiuser detection (MUO) and space diversity. The relative performance gain between Reed-Solomon (RS) code and convolutional code (CC) is well known in [1] for the single user, additive white Gaussian noise (AWGN) channel. In this case, RS codes outperform CC's at high signal-to-noise ratios. We find that this is not the case for the multiuser interference channel mentioned above. For useful error rates, we find that soft-decision CC's to be uniformly better than RS codes when used with DS-COMA modulation in multiuser space-time channels. In our development, we use the Gaussian approximation on the interference to determine performance error bounds for systems with low number of users. Then, we check their accuracy in error rate estimation via system's simulation. These performance bounds will in turn allow us to consider a large number of users where we can estimate the gain in user-capacity due to channel coding. Lastly, the use of turbo codes is considered where it is shown that they offer a coding gain of 2.5 dB relative to soft-decision CC.

Novel High-Rate High-Performance Space-Time Codes

  • Le, Minh-Tuan;Mai Linh;Pham, Van-Su;Giwan Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05a
    • /
    • pp.32-35
    • /
    • 2004
  • In this paper, we propose two novel high-rate high-performance space-time codes for multiple-input multiple-output (MIMO) systems. When $n_{T}$ transmit antennas and $n_{R}$ = $n_{T}$ receive antennas are deployed, the two proposed codes respectively offer transmission rates of ( $n_{T}$ -I) and ( $n_{T}$ - 2) symbols per channel use and diversity orders of 3 and 5. As a consequence, our proposed codes allow the MIMO systems to employ a simple detection technique based on QR decomposition. Moreover, for equal or even higher spectral efficiencies, our proposed codes always provide much better bit error rate (BER) performances than V-BLAST architecture does when $n_{R}$ = $n_{T}$. Computer simulation is given to verify performances of our proposed codes.sed codes.des.

  • PDF

Improved Blind Cyclic Algorithm for Detection of Orthogonal Space-Time Block Codes

  • Le, Minh-Tuan;Pham, Van-Su;Mai, Linh;Yoon, Gi-Wan
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.4
    • /
    • pp.136-140
    • /
    • 2006
  • In this paper, we consider the detection of orthogonal space-time block codes (OSTBCs) without channel state information (CSI) at the receiver. Based on the conventional blind cyclic decoder, we propose an enhanced blind cyclic decoder which has higher system performance than the conventional one. Furthermore, the proposed decoder offers low complexity since it does not require the computation of singular value decomposition.

Effect of Imperfect Channel Knowledge on M-QAM SER Performance of Space-Time Block Codes (불완전한 채널 정보가 시공간 블록 부호의 M-QAM 심볼에러율 성능에 미치는 영향)

  • 고은석;강창언;홍대식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.2A
    • /
    • pp.99-108
    • /
    • 2002
  • In this paper, we discuss the effect of imperfect knowledge of the transmission channel on the M-QAM SER performance of space-time block codes. Because the channel knowledge is used for decoding of space-time block codes, the imperfect channel knowledge can degrade the performance of space-time block codes. In this paper, the channel mismatch error is modeled as errors in the estimation of the channel due to noise and errors due to the variation of the channel. We derive the analytic expression for the symbol error rate (SER) as a function of the average signal to interference ratio (SIR) per channel including the terms of channel mismatch errors. Simulation results show that the acceptable levels of channel estimation error is 10$\^$-3/ and that of channel variation is f$\_$d/T$\_$B/=0.001 at SNR=20dB in space-time block codes.

Design of new space-time block codes using 3 transmit antennas (3개 송신안테나를 사용한 새로운 시공간블록부호 설계)

  • Jung Tae-jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7C
    • /
    • pp.617-623
    • /
    • 2005
  • In this paper, new space-time block codes achieving full rate and full diversity for QAM and quasi-static Rayleigh fading channels when using 3 transmit antennas are proposed. These codes are constructed by serially concatenating the constellation rotating precoders with the Alamouti scheme like the conventional A-ST-CR code Computer simulations show that all of the proposed codes achieve the coding gains greater than the existing ST-CR code, in which the best has approximately 1.5dB and 3dB larger coding gains than the ST-CR code for QPSK and 16-QAM, respectively, at average SER= 10$^{-5}$.