• Title/Summary/Keyword: Space-filling curve

Search Result 24, Processing Time 0.017 seconds

An Unified Spatial Index and Visualization Method for the Trajectory and Grid Queries in Internet of Things

  • Han, Jinju;Na, Chul-Won;Lee, Dahee;Lee, Do-Hoon;On, Byung-Won;Lee, Ryong;Park, Min-Woo;Lee, Sang-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.9
    • /
    • pp.83-95
    • /
    • 2019
  • Recently, a variety of IoT data is collected by attaching geosensors to many vehicles that are on the road. IoT data basically has time and space information and is composed of various data such as temperature, humidity, fine dust, Co2, etc. Although a certain sensor data can be retrieved using time, latitude and longitude, which are keys to the IoT data, advanced search engines for IoT data to handle high-level user queries are still limited. There is also a problem with searching large amounts of IoT data without generating indexes, which wastes a great deal of time through sequential scans. In this paper, we propose a unified spatial index model that handles both grid and trajectory queries using a cell-based space-filling curve method. also it presents a visualization method that helps user grasp intuitively. The Trajectory query is to aggregate the traffic of the trajectory cells passed by taxi on the road searched by the user. The grid query is to find the cells on the road searched by the user and to aggregate the fine dust. Based on the generated spatial index, the user interface quickly summarizes the trajectory and grid queries for specific road and all roads, and proposes a Web-based prototype system that can be analyzed intuitively through road and heat map visualization.

CCD Photometric Observations and Light Curve Synthesis of the Near-Contact Binary XZ Canis Minoris (근접촉쌍성 XZ CMi의 CCD 측광관측과 광도곡선 분석)

  • Kim, Chun-Hwey;Park, Jang-Ho;Lee, Jae-Woo;Jeong, Jang-Hae;Oh, Jun-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.2
    • /
    • pp.141-156
    • /
    • 2009
  • Through the photometric observations of the near-contact binary, XZ CMi, new BV light curves were secured and seven times of minimum light were determined. An intensive period study with all published timings, including ours, confirms that the period of XZ CMi has varied in a cyclic period variation superposed on a secular period decrease over last 70 years. Assuming the cyclic change of period to occur by a light-time effect due to a third-body, the light-time orbit with a semi-amplitude of 0.0056d, a period of 29y and an eccentricity of 0.71 was calculated. The observed secular period decrease of $-5.26{\times}10^{-11}d/P$ was interpreted as a result of simultaneous occurrence of both a period decrease of $-8.20{\times}10^{-11}d/P$ by angular momentum loss (AML) due to a magnetic braking stellar wind and a period increase of $2.94{\times}10^{-11}d/P$ by a mass transfer from the less massive secondary to the primary components in the system. In this line the decreasing rate of period due to AML is about 3 times larger than the increasing one by a mass transfer in their absolute values. The latter implies a mass transfer of $\dot{M}_s=3.21{\times}10^{-8}M_{\odot}y^{-1}$ from the less massive secondary to the primary. The BV light curves with the latest Wilson-Devinney binary code were analyzed for two separate models of 8200K and 7000K as the photospheric temperature of the primary component. Both models confirm that XZ CMi is truly a near-contact binary with a less massive secondary completely filling Roche lobe and a primary inside the inner Roche lobe and there is a third-light corresponding to about 15-17% of the total system light. However, the third-light source can not be the same as the third-body suggested from the period study. At the present, however, we can not determine which one between two models is better fitted to the observations because of a negligible difference of $\sum(O-C)^2$ between them. The diversity of mass ratios, with which previous investigators were in disagreement, still remains to be one of unsolved problems in XZ CMi system. Spectroscopic observations for a radial velocity curve and high-resolution spectra as well as a high-precision photometry are needed to resolve some of remaining problems.

Efficient Disk Access Method Using Region Storage Structure in Spatial Continuous Query Processing (공간 연속질의 처리에서 영역 기반의 저장 구조를 이용한 효율적인 디스크 접근 방법)

  • Chung, Weon-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2383-2389
    • /
    • 2011
  • Ubiquitous applications require hybrid continuous query processing which processes both on-line data stream and spatial data in the disk. In the hybrid continuous spatial query processing, disk access costs for the high-volume spatial data should be minimized. However, previous indexing methods cannot reduce the disk seek time, because it is difficult that the data are stored in contiguity with others. Also, existing methods for the space-filling curve considering data cluster have the problem which does not cluster available data for queries. Therefore, we propose the region storage structure for efficient data access in hybrid continues spatial query processing. This paper shows that there is an obvious improvement of query processing costs through the contiguous data storing method and the group processing for user queries based on the region storage structure.

Optimization of Warp-wide CUDA Implementation for Parallel Shifted Sort Algorithm (병렬 Shifted Sort 알고리즘의 Warp 단위 CUDA 구현 최적화)

  • Park, Taejung
    • Journal of Digital Contents Society
    • /
    • v.18 no.4
    • /
    • pp.739-745
    • /
    • 2017
  • This paper presents and discusses an implementation of the GPU shifted sorting method to find approximate k nearest neighbors which executes within "warp", the minimum execution unit in GPU parallel architecture. Also, this paper presents the comparison results with other two common nearest neighbor searching methods, GPU-based kd-tree and ANN (Approximate Nearest Neighbor) library. The proposed implementation focuses on the cases when k is small, i.e. 2, 4, 8, and 16, which are handled efficiently within warp to consider it is very common for applications to handle small k's. Also, this paper discusses optimization ways to implementation by improving memory management in a loop for the CUB open library and adopting CUDA commands which are supported by GPU hardware. The proposed implementation shows more than 16-fold speed-up against GPU-based other methods in the tests, implying that the improvement would become higher for more larger input data.