• Title/Summary/Keyword: Space-Time Theories

Search Result 100, Processing Time 0.024 seconds

The Pessimistic Induction and Space-Time Theories (비관적 귀납과 시공간 이론)

  • Yang, Kyoung-Eun
    • Korean Journal of Logic
    • /
    • v.14 no.3
    • /
    • pp.1-26
    • /
    • 2011
  • This essay attempts to evaluate the pessimistic induction within the case of the historical development of space-time theories, which are claimed to undergo a radical ontological change providing evidence for the pessimistic induction. In my view, this claim misleads us to see the discontinuity of the structure of classical and relativistic space-time by means of a doubtful interpretation of space-time theories, which holds that space-time causally explains the phenomena of motions.

  • PDF

Van Fraassen on Empirical Equivalence Argument and Interpretations of Space-time (반 프라쎈의 경험동등성 논변과 시공간에 대한 해석)

  • Yang, Kyuong-Eun
    • Korean Journal of Logic
    • /
    • v.15 no.1
    • /
    • pp.85-107
    • /
    • 2012
  • This essay criticizes Van Fraassen's argument for empirical equivalence among competing theories, which is based on his interpretation of Newtonian space-time. I argue that his misleading interpretation of the ontology of absolute space-time results in his ineffective attacks against a residual structure of space-time, absolute velocity. Van Fraassen's argument basically misleads us into empirical equivalence in that his literal reading of Newtonian space-time disregards a variety of aspects of its model.

  • PDF

Leibniz-Clark Controversy on the Nature of Space and Hole Argument (공간의 본성에 대한 라이프니츠-클라크 논쟁과 홀 논변)

  • Yang, Kyoung-eun
    • Journal of Korean Philosophical Society
    • /
    • v.144
    • /
    • pp.235-256
    • /
    • 2017
  • This essay considers Leibniz-Clark correspondence on the nature of space and hole argument. The ontology of space had been debated under the name of substantivalism-relationism controversy. The debates between the two parties are concerned with the nature of existence of parts of space-time. Substantivalism claims that the point of space-time has existence analogous to that of material substance. Relationism argues that space-time should be understood as the framework of possible spatio-temporal relations between bodies. Although these two approaches attempt to respect theoretical context, it seems that the problems of these two interpretive schemes stems from the lack of understanding of the structure of space-time theories, especially how space-time is connected with the laws of motion. In order to appreciate the substance-relation controversy without deviating from the context of space-time theories, it is necessary then to capture how space-time theories are constituted. This essay offers the clear connection of ontology of space-time with present practices of theoretical physicists.

A Study on the Expression and the Sense of Time in Contemporary Architectural Space (현대 건축 공간에 나타나는 시간의 감각과 표현에 관한 연구)

  • Jang, Jung-Jae
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.1
    • /
    • pp.154-163
    • /
    • 2013
  • This study is aimed to identify the expression and the sense of time in contemporary architectural space. And to classify the system and elements of Zeitlichkeit in the contemporary architectural design. The concept of time can be divided into two meaningful perceptions. Those are the concept of realistic time and the concept of subjective time. These tendencies of theories of architectural space has borrowed from innovations in the sciences, and the whole idea of space-time within art and architecture. Those notions developed through the researches of Bauhaus, Postmodernism, Landscape architecture, Digital Architecture and so forth. The result of this study is that the concepts of time are one of the most important strategies of architectural design and have the various languages which there was not in the past. At the point of the transformation in contemporary architecture, the The concepts of space-time are classified into those from the orders of form and space, from dynamic of the image in the dissolution of architectural form, from traces and steps of movement in dynamic form, and from the systems of commands in the digital softwares. As such, Zeitlichkeit in contemporary architecture means that the architecture moves from the construction of the sensual design elements into Art of life through events and contents which human can experience and recognize. These theories and researches reveal that contemporary architectural movements insert the meaningful stories into architectural space through programs and diagrams.

A Study on the Spatiotemporal Interpretation of Derek Jarman's Garden (데릭 저먼의 정원에 대한 시공간적(時空間的) 해석)

  • Yun, Jiayan;Zoh, Kyungjin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.1
    • /
    • pp.66-79
    • /
    • 2016
  • This study looks at spatiotemporal theories regarding the pluralism of time inherent in garden space, and attempts to establish spatiotemporal theories suitable for garden spaces. Based on the established theories, this study analyzes the intimacy of garden spaces by focusing on the objective and subjective time of garden spaces in Derek Jarman's garden through a literature review. The sense of time inherent to a garden space was divided into objective and subjective time. The former refers to ecological time that is quantified and has durability, while the latter indicates time that changes according to the consciousness of the human subject. It also includes time that is emotionalized by the sense of the human subject. This study first interpreted Jarman's garden space from the perspective of objective time. The garden transforms itself into a sensitive space according to Jarman's personal emotions in the current space within objective time, showing the multilayered attributes of space. Therefore, a garden space that exists in objective time is ultimately not objective, and is transformed according to the active reception of the human subject. Next, this study examined Jarman's garden space from the perspective of subjective time. The garden space lost in Jarman's memories and the one in his future illusion turn into a space that connotes abundant meaning according to Jarman's imagination or perception. Therefore, in subjective time, garden space is transformed according to Jarman's consciousness. This study verified that garden space, regardless of whether time is objective or subjective, can create infinite space according to the consciousness or emotions of the human subject beyond the existence of physical space. Since garden space has a unique intimacy unlike urban space, this study presented the uniqueness of garden space with an approach that differs from previous studies on gardens.

Fractional magneto-thermoelastic materials with phase-lag Green-Naghdi theories

  • Ezzat, M.A.;El-Bary, A.A.
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.297-307
    • /
    • 2017
  • A unified mathematical model of phase-lag Green-Naghdi magneto-thermoelasticty theories based on fractional derivative heat transfer for perfectly conducting media in the presence of a constant magnetic field is given. The GN theories as well as the theories of coupled and of generalized magneto-thermoelasticity with thermal relaxation follow as limit cases. The resulting nondimensional coupled equations together with the Laplace transforms techniques are applied to a half space, which is assumed to be traction free and subjected to a thermal shock that is a function of time. The inverse transforms are obtained by using a numerical method based on Fourier expansion techniques. The predictions of the theory are discussed and compared with those for the generalized theory of magneto-thermoelasticity with one relaxation time. The effects of Alfven velocity and the fractional order parameter on copper-like material are discussed in different types of GN theories.

How the Geometries of Newton's Flat and Einstein's Curved Space-Time Explain the Laws of Motion

  • Yang, Kyoung-Eun
    • Journal for History of Mathematics
    • /
    • v.32 no.1
    • /
    • pp.17-25
    • /
    • 2019
  • This essay elucidates the way the geometries of space-time theories explain material bodies' motions. A conventional attempt to interpret the way that space-time geometry explains is to consider the geometrical structure of space-time as involving a causally efficient entity that directs material bodies to follow their trajectories corresponding to the laws of motion. Newtonian substantival space is interpreted as an entity that acts but is not acted on by the motions of material bodies. And Einstein's curved space-time is interpreted as an entity that causes the motions of bodies. This essay argues against this line of thought and provides an alternative understanding of the way space-time geometry explain the laws of motion. The workings of the way that Newton's flat and Einstein's curved space-time explains the law of motion is such that space-time geometry encodes the principle of inertia which specifies straight lines of moving bodies.

Space-Time Symmetry and Space-Time Ontology (시공간 대칭성과 시공간 존재론)

  • Yang, Kyoung-Eun
    • Journal for History of Mathematics
    • /
    • v.28 no.4
    • /
    • pp.181-190
    • /
    • 2015
  • In spite of various attempts to characterize the ontological status of space-time, Newtonian substantivalism and Leibnizian relationism, what is really at issue in the controversy between the two parties is by no means clear. This essay argues that from the perspective of space-time symmetries, classical space-time can be unambiguously classified as substantival space-time and relational space-time. The symmetries of space-time theories distinguish the invariant geometric relationships between events. The essential difference between the two space-times stems from whether or not there exists the affine structure that distinguishes the inertial trajectories of a given body.

Application of the Laplace transformation for the analysis of viscoelastic composite laminates based on equivalent single-layer theories

  • Sy, Ngoc Nguyen;Lee, Jaehun;Cho, Maenghyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.458-467
    • /
    • 2012
  • In this study, the linear viscoelastic response of a rectangular laminated plate is investigated. The viscoelastic properties, expressed by two basic spring-dashpot models, that is Kelvin and Maxwell models, is assumed in the range to investigate the influence of viscoelastic coefficients to mechanical behavior. In the present study, viscoelastic responses are performed for two popular equivalent single-layered theories, such as the first-order shear deformation theory (FSDT) and third-order shear deformation theory (TSDT). Compliance and relaxation modulus of time-dependent viscoelastic behavior are approximately determined by Prony series. The constitutive equation for linear viscoelastic material as the Boltzmann superposition integral equation is simplified by the convolution theorem of Laplace transformation to avoid direct time integration as well as to improve both accuracy and computational efficiency. The viscoelastic responses of composite laminates in the real time domain are obtained by applying the inverse Laplace transformation. The numerical results of viscoelastic phenomena such as creep, cyclic creep and recovery creep are presented.