• 제목/요약/키워드: Space-Power

검색결과 3,248건 처리시간 0.031초

주거에서 발생하는 공간-권력에 대한 담론 연구 - 푸코와 라깡의 후기구조주의 담론을 중심으로 - (A Study on the Discourse of Space-Power in a Dwelling Space - Focus on the Post-structuralism of Foucault and Lacan -)

  • 안은희
    • 한국실내디자인학회논문집
    • /
    • 제20권4호
    • /
    • pp.37-45
    • /
    • 2011
  • This thesis sets out to study the immanent mechanism of architecture which had classified as external spaces in general. As human controls a space, it controls or manages human's behavior, too. This study is depended on the humanities to analyze a various operation of power in the architectural space. It makes a comparative study of a space-power in a dwelling space through a discourse of Michel Foucault and Jacques Lacan, in particular everyday's microscopic scope. According to analytical results, the space-power of dwelling falls under the influence of a spacial arrangement and subject's desire. It has shown a noticeable characteristics in aspects production & consumption, using behavior, and use value. As it is seen through the aspects of production & consumption, owns of the space-power in a dwelling could not be its subject. We have also understood about a physicalistic furniture at the using behavior, it has a special power unconsciously to control a human's action and lifestyle. And then in the aspects of use value, the centric theme is a television. It lies on the core of space-power in dwelling, because is profoundly related to an innate respect of a dwelling value. In conclusion, so this study has the important meaning in the side to offer some interpretative possibility about the architectural space-power through a microscopic structure.

Research Progress of the Structure Vibration-Attitude Coordinated Control of Spacecraft

  • Yang, Jingyu;Qu, Shiying;Lin, Jiahui;Liu, Zhiqi;Cui, Xuanming;Wang, Chu;Zhang, Dujiang;gu, Mingcheng;Sun, Zhongrui;Yang, Kang;Zhou, Lanwei;Chen, Guoping
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권4호
    • /
    • pp.590-601
    • /
    • 2015
  • This paper gives an overview of research on the field of structure vibration-attitude coordinated control of spacecraft. First of all, the importance of the technology has been given an introduction, and then later the research progress of space structure dynamics modeling, research progress of structure vibration-attitude coordinated control of flexible spacecraft have been discussed respectively. Finally, future research on application of structure vibration-attitude coordinated control of spacecraft has been recommended.

원자력발전소 주제어실의 공간특성에 따른 디자인 요소에 관한 연구 (A Study on Design Elements of Main Control Room in Nuclear Power Plants by Analyzing Space Characteristics)

  • 이승훈;이태연
    • 한국실내디자인학회논문집
    • /
    • 제19권6호
    • /
    • pp.249-256
    • /
    • 2010
  • For guaranteeing for security of nuclear power plant, ergonomic factors have been applied to design of main control room, core area for management and control of nuclear power plant, but design elements for performance of operators have been ignored. As the behaviors of operators are important for security of nuclear power plant, space design which makes them pleasant psychologically and makes them maintain attention on security equipments ceaselessly is required. Therefore, the purpose of this study is to analyze space characteristics of main control rooms according to regulations of nuclear power plant and general guidelines of space design, and to offer basic data for designing of main control room which makes operators pleasant psychologically and physically. At first, theoretical issues related with design of main control room are reviewed and several premises of space are developed by abstracting design elements from common space and regulations of nuclear power plant and, then integrating each design elements interactively. In short, the improvement of system environment based on human-machine interface space has brought about perceptual, cognitive, and spatial changes and has realized next generation of main control rooms. And, differences and similarities between ordinary space and main control room, which ergonomic sizes and regulations are applied and is VDT environment based on LDP, are discussed in relation to 13 design elements and 17 space premise.

Research on a Multi-level Space Vector Modulation Strategy in Non-orthogonal Three-dimensional Coordinate Systems

  • Zhang, Chuan-Jin;Wei, Rui-Peng;Tang, Yi;Wang, Ke
    • Journal of Power Electronics
    • /
    • 제17권5호
    • /
    • pp.1160-1172
    • /
    • 2017
  • A novel space vector modulation strategy in the non-orthogonal three-dimensional coordinate system for multi-level three-phase four-wire inverters is proposed in this paper. This new non-orthogonal three-dimensional space vector modulation converts original trigonometric functions in the orthogonal three-dimensional space coordinate into simple algebraic operations, which greatly reduces the algorithm complexity of three-dimensional space vector modulation and preserves the independent control of the zero-sequence component. Experimental results have verified the correctness and effectiveness of the proposed three-dimensional space vector modulation in the new non-orthogonal three-dimensional coordinate system.

State-Space Model Predictive Control Method for Core Power Control in Pressurized Water Reactor Nuclear Power Stations

  • Wang, Guoxu;Wu, Jie;Zeng, Bifan;Xu, Zhibin;Wu, Wanqiang;Ma, Xiaoqian
    • Nuclear Engineering and Technology
    • /
    • 제49권1호
    • /
    • pp.134-140
    • /
    • 2017
  • A well-performed core power control to track load changes is crucial in pressurized water reactor (PWR) nuclear power stations. It is challenging to keep the core power stable at the desired value within acceptable error bands for the safety demands of the PWR due to the sensitivity of nuclear reactors. In this paper, a state-space model predictive control (MPC) method was applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, the MPC model, and quadratic programming (QP). The mathematical models of the reactor core were based on neutron dynamic models, thermal hydraulic models, and reactivity models. The MPC model was presented in state-space model form, and QP was introduced for optimization solution under system constraints. Simulations of the proposed state-space MPC control system in PWR were designed for control performance analysis, and the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.

Conceptual design for a 5 kWe space nuclear reactor power system

  • Huaping Mei;Dali Yu;Shengqin Ma;Jiansong Zhang;Yongju Sun;Chao Chen;Meisheng He;Haixia Wang;Yang Li;Liang Wang;Taosheng Li;Jie Yu
    • Nuclear Engineering and Technology
    • /
    • 제56권9호
    • /
    • pp.3644-3653
    • /
    • 2024
  • Enhancing the capabilities of unmanned space exploration, such as satellite monitoring and space science missions, requires efficient and reliable nuclear power systems. A viable solution is found in the 1-10 kWe power level of space nuclear reactor power systems, offering advantages such as a manageable research and development process, and relatively low investment requirements. This paper introduces a conceptual design for a 5 kWe space nuclear reactor power system, outlining its components and characteristics. The study includes a thorough analysis of potential challenges, encompassing heat pipe failure accidents, re-entry scenarios, and weight estimation considerations. The results demonstrate that the proposed space nuclear reactor power system effectively meets the safety requirements. The total mass of the power system is estimated at approximately 1.5 tons, with a specific mass of around 300 kg/kWe. This research contributes valuable insights for the design of space nuclear reactor power systems operating within a similar power range.

Efficient Hybrid Carrier Based Space Vector Modulation for a Cascaded Multilevel Inverter

  • Govindaraju, C.;Baskaran, K.
    • Journal of Power Electronics
    • /
    • 제10권3호
    • /
    • pp.277-284
    • /
    • 2010
  • This paper presents a novel hybrid carrier based space vector modulation for cascaded multilevel inverters. The proposed technique inherits the properties of carrier based space vector modulation and the fundamental frequency modulation strategy. The main characteristic of this modulation are the reduction of power loss, and improved harmonic performance. The carrier based space vector modulation algorithm is implemented with a TMS320F2407 digital signal processor. A Xilinx Complex Programmable Logic Device is used to develop the hybrid PWM control algorithm and it is integrated with a digital signal processor for hybrid carrier based space vector PWM generation. The inverter offers less weighted total harmonic distortion and it operates with equal electrostatic and electromagnetic stress among the power devices. The feasibility of the proposed technique is verified by spectral analysis, simulation, and experimental results.

Conceptual design of a dual drum-controlled space molten salt reactor (D2 -SMSR): Neutron physics and thermal hydraulics

  • Yongnian Song;Nailiang Zhuang;Hangbin Zhao;Chen Ji;Haoyue Deng;Xiaobin Tang
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2315-2324
    • /
    • 2023
  • Space nuclear reactors are becoming popular in deep space exploration owing to their advantages of high-power density and stability. Following the fourth-generation nuclear reactor technology, a conceptual design of the dual drum-controlled space molten salt reactor (D2-SMSR) is proposed. The reactor concept uses molten salt as fuel and heat pipes for cooling. A new reactivity control strategy that combines control drums and safety drums was adopted. Critical physical characteristics such as neutron energy spectrum, neutron flux distribution, power distribution and burnup depth were calculated. Flow and heat transfer characteristics such as natural convection, velocity and temperature distribution of the D2-SMSR under low gravity conditions were analyzed. The reactivity control effect of the dual-drums strategy was evaluated. Results showed that the D2-SMSR with a fast spectrum could operate for 10 years at the full power of 40 kWth. The D2-SMSR has a high heat transfer coefficient between molten salt and heat pipe, which means that the core has a good heat-exchange performance. The new reactivity control strategy can achieve shutdown with one safety drum or three control drums, ensuring high-security standards. The present study can provide a theoretical reference for the design of space nuclear reactors.

The Failure Analysis of Paralleled Solar Array Regulator for Satellite Power System in Low Earth Orbit

  • Jang, Sung-Soo;Kim, Sung-Hoon;Lee, Sang-Ryool;Choi, Jae-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • 제28권2호
    • /
    • pp.133-141
    • /
    • 2011
  • A satellite power system should generate and supply sufficient electric power to perform the satellite mission successfully during the satellite mission period, and it should be developed to be strong to the failure caused by the severe space environment. A satellite power system must have a high reliability with respect to failure. Since it cannot be repaired after launching, different from a ground system, the failures that may happen in space as well as the effect of the failures on the system should be considered in advance. However, it is difficult to use all the hardware to test the performance of the satellite power system to be developed in order to consider the failure mechanism of the electrical power system. Therefore, it is necessary to develop an accurate model for the main components of a power system and, based on that, to develop an accurate model for the entire power system. Through the power system modeling, the overall effect of failure on the main components of the power system can be considered and the protective design can be devised against the failure. In this study, to analyze the failure mode of the power system and the effects of the failure on the power system, we carried out modeling of the main power system components including the solar array regulator, and constituted the entire power system based on the modeling. Additionally, we investigated the effects of representative failures in the solar array regulator on the power system using the power system model.

Power-Space Functions in High Speed Railway Wireless Communications

  • Dong, Yunquan;Zhang, Chenshuang;Fan, Pingyi;Fan, Pingzhi
    • Journal of Communications and Networks
    • /
    • 제17권3호
    • /
    • pp.231-240
    • /
    • 2015
  • To facilitate the base station planning in high speed railway communication systems, it is necessary to consider the functional relationships between the base station transmit power and space parameters such as train velocity and cell radius. Since these functions are able to present some inherent system properties determined by its spatial topology, they will be referred to as the power-space functions in this paper. In light of the fact that the line-of-sight path persists the most power of the received signal of each passing train, this paper considers the average transmission rate and bounds on power-space functions based on the additive white Gaussian noise channel (AWGN) model. As shown by Monte Carlo simulations, using AWGN channel instead of Rician channel introduces very small approximation errors, but a tractable mathematical framework and insightful results. Particularly, lower bounds and upper bounds on the average transmission rate, as well as transmit power as functions of train velocity and cell radius are presented in this paper. It is also proved that to maintain a fixed amount of service or a fixed average transmission rate, the transmit power of a base station needs to be increased exponentially, if the train velocity or cell radius is increased, respectively.