• Title/Summary/Keyword: Space-Frequency OFDM transmit diversity scheme

Search Result 17, Processing Time 0.021 seconds

A Full Rate Quasi-orthogonal STF-OFDM with DAC-ZF Decoder over Wireless Fading Channels

  • Jin, Ji-Yu;Ryu, Kwan-Woong;Park, Yong-Wan
    • ETRI Journal
    • /
    • v.28 no.1
    • /
    • pp.87-90
    • /
    • 2006
  • In this letter, we propose a quasi-orthogonal space-time-frequency (QOSTF) block coded orthogonal frequency division multiplexing (OFDM) that can achieve full symbol rate with four transmit antennas. Since the proposed QOSTF-OFDM cannot achieve full diversity, we use a diversity advantage collection with zero forcing (DAC-ZF) decoder to compensate the diversity loss at the receiving side. Due to modulation advantage and collected diversity advantage, the proposed scheme exhibits a better bit-error rate performance than other orthogonal schemes.

  • PDF

Alternate Time-Switched Multiplexed Space-Time Block Coding technique for OFDM systems (OFDM 시스템에 적용가능한 교번 스위칭하는 다중화 시공간 블록 코딩 기법)

  • Jung, Hyeok Koo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.2
    • /
    • pp.136-141
    • /
    • 2016
  • This paper proposes an alternate time-switched multiplexed space-time block coding technique for orthogonal frequency division modulation systems. The traditional multiplexed space-time block coding technique can provide more data rate owing to multiple transmit and receive technique, which causes a lot of hardware burden. Alternate time-switched scheme of transmitting time-domain zeros can reduce this hardware burden by half with time-domain switches only. Simulation results show that alternate time-switched scheme has almost same performance with half of baseband and RF modules in comparison with a multiplexed space-time block coding for orthogonal frequency division modulation systems with twice repetitive transmission.

Frequency divided group beamforming with sparse space-frequency code for above 6 GHz URLLC systems

  • Chanho Yoon;Woncheol Cho;Kapseok Chang;Young-Jo Ko
    • ETRI Journal
    • /
    • v.44 no.6
    • /
    • pp.925-935
    • /
    • 2022
  • In this study, we propose a limited feedback-based frequency divided group beamforming with sparse space-frequency transmit diversity coded orthogonal frequency division multiplexing (OFDM) system for ultrareliable low latency communication (URLLC) scenario. The proposed scheme has several advantages over the traditional hybrid beamforming approach, including not requiring downlink channel state information for baseband precoding, supporting distributed multipoint transmission structures for diversity, and reducing beam sweeping latency with little uplink overhead. These are all positive aspects of physical layer characteristics intended for URLLC. It is suggested in the system to manage the multipoint transmission structure realized by distributed panels using a power allocation method based on cooperative game theory. Link-level simulations demonstrate that the proposed scheme offers reliability by achieving both higher diversity order and array gain in a nonline-of-sight channel of selectivity and limited spatial scattering.

A Relay Assisted Low PAPR Technique for SFBC-OFDM Transmission

  • Kim, Young-Jin;Seo, Dae-Young;Im, Gi-Hong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9A
    • /
    • pp.649-655
    • /
    • 2009
  • The peak-to-average power ratio (PAPR) regrowth after the clipping is one main disadvantage of space-frequency block coded orthogonal frequency-division multiplexing (SFBC-OFDM). In this paper, we propose a relay assisted low PAPR technique for SFBC-OFDM transmission. For low PAPR at the source (mobile equipment), the relay processes SFBC encoding, which enables the source to transmit clipped single-input single-output (SISO)-OFDM signals without any increase of PAPR. Simulation results show that the clipped signal of proposed scheme is effectively recovered, and the proposed scheme achieves the diversity of SFBC without the complexity of multiple antennas at the source.

Performance Enhancement of OFDM Systems (Using Interference cancellation schemes of TD(Transmit Diversity)) (간섭제거 및 송신 다이버시티 기법을 적용한 OFDM 시스템에 대한 성능개선)

  • Kim, Jang-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.7
    • /
    • pp.77-86
    • /
    • 2012
  • Using OFDM(Orthogonal Frequency Division Multiplexing) provides the same diversity order as MRRC(Maximal Ratio Receiver Combining). It is assumed that fading channel is constant across two consecutive symbols. Unfortunately, when the channel condition is changed for the two consecutive symbols, the OFDM using STBC(Space Time Block Code) does not offer good performance due to the large doppler shift. In this paper, we have proposed a performance enhancement scheme for OFDM using STBC over time-selective fading channel. Simulation results for various doppler shift rates are presented to robust system performance of OFDM due to using our proposed scheme over time-selective fading channel.

Adaptive SFBC-OFDM with Pre-equalizer under Time-varying Multipath Fading Channel (시변 다중 경로 페이딩 환경에서 사전 등화기 기반 적응 변조 SFBC-OFDM 시스템에 관한 연구)

  • 고정선;김낙명
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6A
    • /
    • pp.623-630
    • /
    • 2004
  • The adaptive modulation along with SFBC transmit diversity is a very effective method to increase the capacity of an OFDM system. However, severe performance degradation is resulted when inter-symbol interference is applied due to frequency-selective fading in mobile communications. In this paper, we have proposed and analyzed an OFDM system with SFBC transmit diversity and adaptive modulation scheme based on pre-equalization methods, in order to increase the data transmission rate in the downlink without much increase in system complexity. By introducing subchannel grouping and the pre-equalization method among adjacent subchannels, we could enhance the efficiency of the adaptive modulation a lot. By computer simulation, it has been proven that the proposed schemes show a better BER and throughput performance than the conventional schemes under severely time-varying multipath fading channel.

Selection of the Best Two-Hop AF Wireless Link under Multiple Antenna Schemes over a Fading Channel

  • Rahaman, Abu Sayed Md. Mostafizur;Islam, Md. Imdadul;Amin, M.R.
    • Journal of Information Processing Systems
    • /
    • v.11 no.1
    • /
    • pp.57-75
    • /
    • 2015
  • In evaluating the performance of a dual-hop wireless link, the effects of large and small scale fading has to be considered. To overcome this fading effect, several schemes, such as multiple-input multiple-output (MIMO) with orthogonal space time block codes (OSTBC), different combining schemes at the relay and receiving end, and orthogonal frequency division multiplexing (OFDM) are used in both the transmitting and the relay links. In this paper, we first make compare the performance of a two-hop wireless link under a different combination of space diversity in the first and second hop of the amplify-and-forward (AF) case. Our second task in this paper is to incorporate the weak signal of a direct link and then by applying the channel model of two random variables (one for a direct link and another for a relayed link) we get very impressive result at a low signal-to-noise ratio (SNR) that is comparable with other models at a higher SNR. Our third task is to bring other three schemes under a two-hop wireless link: use of transmit antenna selection (TAS) on both link with weak direct link, distributed Alamouti scheme in two-hop link and single relay antenna with OFDM subcarrier. Finally, all of the schemes mentioned above are compared to select the best possible model. The main finding of the paper is as follows: the use of MIMO on both hops but application TAS on both links with weak direct link and the full rate OFDM with the sub-carrier for an individual link provide a better result as compared to other models.