• Title/Summary/Keyword: Space velocity

Search Result 1,837, Processing Time 0.031 seconds

Radial Velocity and Photometric Study of the Long Period Interaction Binary AQ Cas

  • Lee, Yong-Sam-;Chun, Yong-Woo;Jeong, Jang-Hae
    • Bulletin of the Korean Space Science Society
    • /
    • 1992.10a
    • /
    • pp.15-15
    • /
    • 1992
  • AQ Cassiopeiae (BD+61`0242, uv=10, Sp=B3+Bg) is a totally eclipsing binary system with the obital period of about 12 days. 71 was observed for 15 nights in 1985 with the1.8-m telescope at the DAO, employing a Reticon and a three-stage image tube attached to the spectrograph. And also, photometric observations of AQ Cas had been made inUBv for six years from 1982 to 1988 at Yonsei University Observatory(YUO). This work includes UBV observations obtained at YUO as a part of The Ten-Year Observing Program(1982-1992). Double lined radial, velocity curves and Ufv light curves of AQC as are constructed. The light curves and radial velocity curves show a strong evidence of circumstellar matter or mass stream. It is clear at the phases of just outside externaleclipse contacts, particularly at phase 0.8-0.9, shown in Figures 1 and 2. A solution by combining the radial velocity and photometric curves of the binary was obtained with the Wilson-Devinney Code. We found that the system is semi-detached with the coolcomponent filling its Roche lobe. The absolute dimensions of AQ Cas are calculated. The result shows that this system consists of two massive and subgiant stars.

  • PDF

Joint Space Trajectory Planning Considering Physical Limits for Two-wheeled Mobile Robots (물리적 제한을 고려한 두 바퀴 로봇의 관절 공간 궤적 생성 방법)

  • Yang, Gil-Jin;Choi, Byoung-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.6
    • /
    • pp.540-546
    • /
    • 2013
  • This paper presents a trajectory planning algorithm for TMR (Two-wheeled Mobile Robots). The trajectory is developed in joint space and considers the physical limits of a TMR. First, we present a process for generating a smooth curve through a Bezier curve. The trajectory for the center of the TMR following the Bezier curve is developed through a convolution operator taking into consideration its physical limits. The trajectory along the Bezier curve is regenerated using time-dependent parameters which correspond to the distance driven by the velocity of the center of the TMR in a sampling time. The velocity commands in the Cartesian space are converted to actuator commands for two wheels. In case that the actuator commands exceed the maximum velocity, the trajectory is redeveloped with compensated center velocity. We also suggest a smooth trajectory planning algorithm in joint space for the two segmented paths. Finally, the effectiveness of the algorithm is shown through numerical examples and application to a simulator.

CODEX Filter Configuration

  • Bong, Su-Chan;Yang, Heesu;Kim, Jihun;Lee, Jae-Ok;Kim, Yeon-Han;Cho, Kyuhyoun;Reginald, Nelson L.;Gong, Qian;Budinoff, Jason G.;Newmark, Jeffrey S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.78.3-79
    • /
    • 2021
  • Coronal Diagnostic Experiment (CODEX) is a diagnostic coronagraph developed by the Korea Astronomy and Space Science Institute and the NASA Goddard Space Flight Center (GSFC) to be deployed in 2023 on the International Space Station (ISS). It is designed to obtain simultaneous measurements of electron density, temperature, and velocity in the 2.5 - 10 solar radius range using multiple filters. The filters are mounted in two filter wheel assemblies (FWAs), which have five filter positions each. One position of each FWA is occupied by windows, and remaining eight positions are occupied by three bandpass filters for temperature, two bandpass filters for velocity, one Ca II H filter for F-corona, one broadband filter for fast imaging and density, and one neutral density (ND) filter for direct Sun viewing and safety.

  • PDF

On the Characteristics of the Low Velocity Displacement Air-Conditioning System (저속치환 공조시스템의 특성에 대한 연구)

  • Lee, Kye-Cheul;Kim, Dong-Kyu;Kim, Kyoung-Gu;Kwon, Young-Pil
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.493-498
    • /
    • 2001
  • In the low velocity displacement air-conditioning system, the conditioned air is supplied from the diffuser placed on the wall near the floor and vented near the ceiling. This system has some advantages upon the traditional mixing system; the air quality near the people is improved by the displacing action of the system and the energy may be saved by neglecting the cooling or heating load for the upper space of the space above the people. This study is to examine the temperature and velocity distributions in the room and near the diffuser. It is found that the temperature is stratified uniformly all over the room space to show the displacing function of the system.

  • PDF

Optimal Path Planning of Mobile Robot for Multiple Moving Obstacles (복수의 동적 장애물에 대한 이동로봇의 최적경로설계)

  • Kim, Dae-Gwang;Kang, Dong-Joong
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.2
    • /
    • pp.183-190
    • /
    • 2007
  • The most important thing for navigation of a mobile robot is to find the most suitable path and avoid the obstacles in the static and dynamic environment. This paper presents a method to search the optimal path in start space extended to time domain with considering a velocity and a direction of moving obstacles. A modified version of $A^*$ algorithm has been applied for path planning in this work and proposed a method of path search to avoid a collision with moving obstacle in space-tim domain with a velocity and an orientation of obstacles. The velocity and the direction for moving obstacle are assumed as linear form. The simulation result shows that a mobile robot navigates safely among moving obstacles of constant linear velocity. This work can be applied for not only a moving robot but also a legged humanoid robot and all fields where the path planning is required.

  • PDF

Study on the Measurement of Fluid Velocity Within a Small Droplet - Compensation of Refracted Image (미소 액적 내부 유동의 속도측정에 관한 연구 - 굴절영상의 이미지 보정)

  • Heo, Young-Gun;Jeon, Young-Hun;Suh, Yong-Kweon
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.2
    • /
    • pp.42-46
    • /
    • 2010
  • In this paper we report the method of visualizing and measuring the fluid flow within a small droplet of millimeter size. We use a vertical laser sheet in visualization of the micrometer size and special attention is given to the arrangement of microscope to obtain clear images. Then we use a PIV technique to measure the velocity of the internal flow from the images taken. Since the droplet is of spherical shape, the images represent highly deteriorated picture of the real objects due to the refraction phenomenon. In order to compensate the refraction, we in this study developed two kinds of methods for the real velocity. In the first method, the refracted images are directly used to obtain the velocity in the image space, and then the velocity is transformed to the real space. In the second method the images are first transformed to the real-space objects, and then the PIV is used to measure the velocity field. We compared the two results to prove the usefulness of the compensation technique.

Experimental Study on Laser-driven Miniflyer for Description of Space Debris with High-speed (빠른 속도의 우주먼지 모사를 위한 레이저기반의 입자가속에 관한 실험적 연구)

  • Baek, Won-Kye;Yoh, Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.120-126
    • /
    • 2013
  • Increasing numbers of space debris around the earth now pose a major threat to satellites as their impact velocity may reach up to several km/s. We use a pulse laser to accelerate a miniflyer for mimicking the space debris. The multi-layer coat on the confined medium is known to promote a higher acceleration. However, it requires some special techniques which take somewhat long time and cost to coat. Instead, we devised a simple concept to coat by the black lacquer paint on a flyer. It shows improvement in the flyer velocity by 1.5-2 times the uncoated, and the resulting velocity reached 1.42km/s with Nd:YAG laser energy under 1.4 joules. The resulting velocity is suitable for satellite vulnerability test for debris impact in the geostationary orbit.

DEVELOPMENT OF RVI2CELL - A PRECISE RADIAL VELOCITY ESTIMATION PROGRAM WITH BOES DATA (BOES 데이터를 이용한 정밀 시선 속도 추정 프로그램 RVI2CELL 개발)

  • Han, In-Woo;Kim, Kang-Min;Lee, Byeong-Cheol;Valyavin, G.
    • Publications of The Korean Astronomical Society
    • /
    • v.22 no.3
    • /
    • pp.75-81
    • /
    • 2007
  • In this study we present basic principles and features of RVI2CELL, a precise RV (radial velocity) estimation program to process stellar spectra obtained through iodine cell. RVI2CELL is very robust and fast program. The instrument profile can be modeled as a sum of Gaussian functions or a non-parametric arbitrary shape. The RV accuracy estimated by observation of a RV standard star Tau Ceti indicates about 9 m/s.

Density distributions and Power spectra of outflow-driven turbulence

  • Kim, Jongsoo;Moraghan, Anthony
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.57.2-57.2
    • /
    • 2014
  • Protostellar jets and outflows are signatures of star formation and promising mechanisms for driving supersonic turbulence in molecular clouds. We quantify outflow-driven turbulence through three-dimensional numerical simulations using an isothermal version of the total variation diminishing code. We drive turbulence in real space using a simplified spherical outflow model, analyze the data through density probability distribution functions (PDFs), and investigate density and velocity power spectra. The real-space turbulence-driving method produces a negatively skewed density PDF possessing an enhanced tail on the low-density side. It deviates from the log-normal distributions typically obtained from Fourier-space turbulence driving at low densities, but can provide a good fit at high densities, particularly in terms of mass-weighted rather than volume-weighted density PDF. We find shallow density power-spectra of -1.2. It is attributed to spherical shocks of outflows themselves or shocks formed by the interaction of outflows. The total velocity power-spectrum is found to be -2.0, representative of the shock dominated Burger's turbulence model. Our density weighted velocity power spectrum is measured as -1.6, slightly less that the Kolmogorov scaling values found in previous works.

  • PDF

A Position Control for a Parallel Stage with 6 degrees of freedom Using Magnetic Actuators (전자기 구동장치를 이용한 병렬형 6자유도 스테이지의 위치제어)

  • Lee Se-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.102-111
    • /
    • 2005
  • In this paper, we address a position control for a parallel stage, which is levitated and driven by electric magnetic force. This consists of a levitating object (called platen) with 4 permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force for suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion by the vertical and horizontal force. A dynamic equation of the stage system is derived based on Newton-Euler method and it's special Jacobian matrix describing a relation between the limited velocity and Cartesian velocity is done. There are proposed two control methods for positioning which are Cartesian space controller and Actuator space controller. The control performance of the Cartesian space controller is better than the Actuator space controller in task space trajectory while the Actuator space controller is simpler than the Cartesian space controller in controller realization.