• Title/Summary/Keyword: Space vehicles-Space vehicles

Search Result 714, Processing Time 0.027 seconds

Optimal Soft Landing Guidance and Attitude Control for Reusable Launch Vehicles (재사용 발사체를 위한 최적 연착륙 유도 및 자세 제어 연구)

  • Jeon, Ho-Young;Cho, Jun-Hyon;Kim, Jong-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.4
    • /
    • pp.251-257
    • /
    • 2022
  • We formulated the convex optimization based minimum energy soft landing problem for reusable launch vehicles, and obtained the minimum time trajectory via the bisection search. In order to implement the the optimal guidance command and complete the flight control architectures on the soft landing stage, we designed the classical attitude control loops, and formulated and solved the optimal actuator allocation problem. The obtained soft landing guidance performance was analyzed via nonlinear 6-DOF simulation.

Impacts of Payload Weights on the Cost Effectiveness of Reusable Launch Vehicles (재사용발사체의 비용 효용성에 미치는 임무중량의 영향)

  • Yang, Soo Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.4
    • /
    • pp.1-9
    • /
    • 2019
  • Recently, in the space market, there has been a rapid reduction of the launch price. The major reason is that a few commercial companies, especially SpaceX, began to enter into the space market about ten years ago, which has changed the space market from monopolization to competition, and accelerated the adoption of commercial efficiency in the technology and management. Also, the successful landing and recovery of a first stage in 2016 by SpaceX proved to be a prelude to opening a new era of reusable launch vehicles, and SpaceX declared the groundbreaking launch price through using the reusable launch vehicle. This study calculates the total launch cost required to put a certain satellite into the LEO, compares the launch cost in three cases with different payload weights, and reviews the impacts of the payload on the cost effectiveness of a reusable vehicle. The total launch cost is divided into 6 subsections cost, namely development cost, production cost, refurbishment cost, operation cost, fixed-cost of factory and launch site, and insurance cost. The cost estimation relationships used in the calculation are taken from the commonly proven cost models such as TRANSCOST.

A study on the calculation method for the number of vehicles in queue to determine the fire ventilation capacity in road tunnels - forced on the effect of queue length (도로터널의 제연용량 산정을 위한 정체차량대수 산정기법에 관한 연구 - 정체길이를 중심으로)

  • Yoo, Yong-Ho;Kim, Hyo-Gyu;Ryu, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.1
    • /
    • pp.41-52
    • /
    • 2016
  • When the queue length of congestion vehicles in tunnel fire is extended beyond tunnel length, the capacity of smoke control system needs to be increased in line with ventilation resistance. However, the vehicle queue length is not defined, so a rational equation is necessary in current fire prevention guideline. This study is intended to propose an equation to calculate the queue length considering the number of vehicles in queue in tunnel fire and evaluate the applicability by tunnel length as well. When it comes to normal tunnel, it is necessary to compare the vehicle queue length with tunnel length up to the length of 1,200 m in a bid to avoid applying the vehicle queue length excessively in case of fire. As a result of evaluation of applicability to model a tunnel, saving the number of jet fan for smoke control appeared to be effective. Besides, quantitative approach to explain the vehicle queue length through the relationship between the percentage of large vehicles and tunnel length was presented. Consequently, when the queue length of the congestion vehicles exceeds the tunnel length in determining the capacity of smoke control system in case of fire, the number of vehicles beyond the tunnel length needs to be excluded from estimating the ventilation resistance by vehicles.

Nonlinear Model Predictive Control for Multiple UAVs Formation Using Passive Sensing

  • Shin, Hyo-Sang;Thak, Min-Jea;Kim, Hyoun-Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.16-23
    • /
    • 2011
  • In this paper, nonlinear model predictive control (NMPC) is addressed to develop formation guidance for multiple unmanned aerial vehicles. An NMPC algorithm predicts the behavior of a system over a receding time horizon, and the NMPC generates the optimal control commands for the horizon. The first input command is, then, applied to the system and this procedure repeats at each time step. The input constraint and state constraint for formation flight and inter-collision avoidance are considered in the proposed NMPC framework. The performance of NMPC for formation guidance critically degrades when there exists a communication failure. In order to address this problem, the modified optimal guidance law using only line-of-sight, relative distance, and own motion information is presented. If this information can be measured or estimated, the proposed formation guidance is sustainable with the communication failure. The performance of this approach is validated by numerical simulations.

Waypoint Planning Algorithm Using Cost Functions for Surveillance

  • Lim, Seung-Han;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.136-144
    • /
    • 2010
  • This paper presents an algorithm for planning waypoints for the operation of a surveillance mission using cooperative unmanned aerial vehicles (UAVs) in a given map. This algorithm is rather simple and intuitive; therefore, this algorithm is easily applied to actual scenarios as well as easily handled by operators. It is assumed that UAVs do not possess complete information about targets; therefore, kinematics, intelligence, and so forth of the targets are not considered when the algorithm is in operation. This assumption is reasonable since the algorithm is solely focused on a surveillance mission. Various parameters are introduced to make the algorithm flexible and adjustable. They are related to various cost functions, which is the main idea of this algorithm. These cost functions consist of certainty of map, waypoints of co-worker UAVs, their own current positions, and a level of interest. Each cost function is formed by simple and intuitive equations, and features are handled using the aforementioned parameters.

Development of 100, 250 N Commercial $H_2O_2$ Monopropellant Thruster for Space Launch Vehicles (발사체 자세제어를 위한 100, 250 N 급 상용 과산화수소 단일추진제 추력기 개발)

  • An, Sung-Yong;Kim, Jong-Hak;Yoon, Ho-Seung;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.19-22
    • /
    • 2009
  • Design and performance evaluation of $H_2O_2$ monopropellant thrusters to be used at attitude control of space launch vehicles were presented in this paper. Flight model thrusters were designed after two reactors for 100, 250 Newton were conformed at engineering model. Each thruster was evaluated by measurement of characteristic velocity, thrust, specific impulse, and pulse response times.

  • PDF

Numerical Prediction of Aviation Fuel Temperatures in Unmanned Air Vehicles

  • Baek, Nak-Gon;Lim, Jin-Shik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.4
    • /
    • pp.379-384
    • /
    • 2011
  • This paper performs numerical prediction of fuel temperature in the fuel tanks of unmanned air vehicles for both ground static non-operating and in flight transient conditions. The calculation is carried out using a modified Dufort-Frankel scheme. For this calculation, it is assumed that a non-operating vehicle on the ground is subjected to repeating daily cycles of ambient temperature with solar radiation and wind under 1%, with a 20% probability of hot day conditions. The energy conservation equation is used as the governing equation to calculate heat transfer between the fuel tank surface and the ambient environment. Results of the present analysis may be used as the estimated initial values of fuel temperatures in a vehicle's fuel tank for the purpose of analyzing transient fuel temperatures during various flight missions. This research also demonstrates that the fuel temperature of the front tank is higher than that of the rear tank, and that the difference between the two temperatures increases in the later phases of flight due to the consumption of fuel.

Formation Geometry Center based Formation Controller Design using Lyapunov Stability Theorem

  • Lee, Ji-Eun;Kim, Hyeong-Seok;Kim, You-Dan;Han, KiHoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.71-78
    • /
    • 2008
  • New formation flight controller for unmanned aerial vehicles is proposed. A behavioral decentralized control approach called formation geometry center control is adopted. Trajectory tracking as well as formation geometry keeping are the purpose of the formation flight, and therefore two controllers are designed: a trajectory tracking controller for reference trajectory tracking, and a position controller for formation geometry keeping. Each controller is designed using Lyapunov stability theorem to guarantee the asymptotic stability. Formation flight controller is finally obtained by combining the trajectory tracking controller and the formation geometry keeping controller using a weighting parameter that depends on the relative distance error between unmanned aerial vehicles. Numerical simulations are performed to validate the performance of the proposed controller.

Strength Analysis of Luggage Intrusion into Recreational Vehicle Seat (RV 차량 시트의 적재물 침입 강도해석)

  • Bae Jinwoo;Kang Sungjong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.160-166
    • /
    • 2005
  • In recent, recreational vehicles, which efficiently provide wide inner space for various utilities, are highly preferred in automobile market. Though those vehicles enable to load much luggage in space behind the last seat, in case of frontal impact with high velocity the luggage strongly collides into the seat back and the passengers in. the last seat could be severely injured. Therefore, high strength against luggage intrusion is required for the last seat, and it is regulated by law of ECE R17. In this study, for a recreational vehicle under developing, an analysis technique for simulating seat crash in accordance with luggage intrusion test of ECE R17 was investigated. The results exhibited good correlation with the test ones.

Aerodynamic Problems of Launch Vehicles

  • Chou, Kyong-Chol
    • Journal of Astronomy and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.5-21
    • /
    • 1984
  • The airflow along the surface of a launch vehicle together with base flow of clustered nozzles cause problems which may affect the stability or efficiency of the entire vehicle. The problem may occur when the vehicle is on the launching pad or even during flight. As for such problems, local steady-state loads, overall steady-state loads, buffet, ground wind loads, base heating and rocket-nozzle hinge moments are examined here specifically.

  • PDF