• Title/Summary/Keyword: Space vector modulation

Search Result 324, Processing Time 0.032 seconds

Reducing Harmonics of the Next-generation High-speed Railway Inverter System by Random Pulse Position Modulation Technique based on Space Vector Modulation (Random Pulse Position PWM 방식을 적용한 IPMSM 기반 차세대 고속전철 구동 인버터 시스템의 고조파 저감)

  • Lee, Sang-Hyun;Jin, Kang-Hwan;Kim, Sung-Je;Kno, Ae-Sook;Kim, Yoon-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.6
    • /
    • pp.94-101
    • /
    • 2012
  • In this paper, The Next Generation High Speed Railway inverter system based on IPMSM drives using Random Pulse Position Modulation is proposed to reduce electromagnetic noise. To verify the validity of study, the simulator for the proposed system is designed and impplemented. Simulation program is developed using Matlab/Simulink. The simulation results of the proposed system was compared with the system using conventional method. The results show that the voltage and current harmonics of the proposed Next Generation High Speed Railway Inverter system. significantly decrease and spread into wide band area by the proposed Random Pulse Position modulation technique based on Space Vector Modulation method.

Performance Analysis and Comparison of Post-Fault PWM Rectifiers Using Various Space Vector Modulation Methods

  • Zhu, Chong;Zeng, Zhiyong;Zhao, Rongxiang
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2258-2271
    • /
    • 2016
  • In this paper, some crucial performance characteristics related to the operational reliability of the post-fault Pulse Width Modulated (PWM) rectifiers, such as line current harmonic distortion, Common Mode Voltage (CMV), and current stress on the capacitors, are fully investigated. The aforementioned performance characteristics of post-fault rectifiers are highly dependent on the utilized space vector modulation (SVM) schemes, which are also examined. Detailed analyses of the three most commonly used SVM schemes for post-fault PWM rectifiers are provided, revealing the major differences in terms of the zero vector synthesis approaches. To compare the performances of the three SVM schemes, the operating principles of a post-fault rectifier are presented with various SVM schemes. Using analytical and numerical methods in the time domain, the performances of the line current distortion, common mode voltage and capacitor current are evaluated and compared for each SVM scheme. The proposed analysis demonstrates that the zero vector synthesis approaches of the considered methods have significant impacts on the performance characteristics of rectifiers. In addition, the advantages and disadvantages of the proposed SVM schemes are discussed. The experimental results verify the effectiveness and validity of the proposed analysis.

Current Control for an AFE Rectifier Using Space Vector PWM (공간벡터변조방식에 의한 AFE정류기의 전류제어)

  • Jeon, Cheol-Hwan;Hur, Jae-Jung;Yoon, Kyoung-Kuk;Yoo, Heui-Han;Kim, Sung-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.4
    • /
    • pp.498-503
    • /
    • 2019
  • Electric propulsion ships are gaining widespread interest in the marine industry owing to extreme air pollution concerns. Consequently, several studies are actively being conducted for improving the power quality. Various methods have been developed that incorporate passive filters, notch filters, and active filters for reducing the harmonic content in the input current of a conventional diode front end rectifier. Among such filters, the active front end (AFE) rectifier is considered as an excellent technology. In this paper, current control for an AFE rectifier employing space vector PWM (Pulse Width Modulation) is proposed. Conventional current control methods for the AFE rectifier, hysteresis, SPWM (Sinusoidal Pulse Width Modulation), and SVPWM (Space Vector Pulse Width Modulation) were simulated by employing the PSIM software tool for analysis and comparisons. The results corroborate that SVPWM has the simplest structure and provides the best performance.

Analysis and simulation of Cascaded H-bridge 7 level inverter for eliminating typical harmonic waveforms (특정 고조파 제거를 위한 Cascaded H-bridge 7레벨 인버터의 특성해석 및 시뮬레이션)

  • Jin, Sun-Ho;Oh, Jin-Suk;Jo, Kwan-Jun;Kwak, Jun-Ho;Lim, Myoung-Kyu;Kim, Jang-Mok
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.1022-1028
    • /
    • 2005
  • This paper is presented the analysis results and simulation results of cascaded H-bridge 7 level inverter with various modulation index. Stepped waveform having number of switching was used to eliminate harmonic components. Switching angles according to modulation index are calculated numerically. Therefore, 3 times of switching with 7 level topology and QWS(Quarter Wave Symmetry) could eliminate 5th and 7th harmonics. The harmonic characteristics are compared to those of space vector modulation method which known as common modulation method in industrial field. Stepped waveform method showed higher ability to reduce, especially lower order of harmonics.

  • PDF

A Singular Value Decomposition based Space Vector Modulation to Reduce the Output Common-Mode Voltage of Direct Matrix Converters

  • Guan, Quanxue;Yang, Ping;Guan, Quansheng;Wang, Xiaohong;Wu, Qinghua
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.936-945
    • /
    • 2016
  • Large magnitude common-mode voltage (CMV) and its variation dv/dt have an adverse effect on motor drives that leads to early winding failure and bearing deterioration. For matrix converters, the switch states that connect each output line to a different input phase result in the lowest CMV among all of the valid switch states. To reduce the output CMV for matrix converters, this paper presents a new space vector modulation (SVM) strategy by utilizing these switch states. By this mean, the peak value and the root mean square of the CMV are dramatically decreased. In comparison with the conventional SVM methods this strategy has a similar computation overhead. Experiment results are shown to validate the effectiveness of the proposed modulation method.

A New Space Vector Random PWM Scheme for Inverter Fed Drive Systems (인버터 구동 시스템을 위한 새로운 공간벡터 Random PWM기법)

  • 나석환;정영국;임영철
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.6
    • /
    • pp.525-537
    • /
    • 2001
  • In this paper a new space vector RPPWM(Random Position PWM) is proposed. In the propsed RPPWM each of three phase pulses is located randomly in each switching interval. Based on the Space vector modulation technique the duty ratio of the pulses is calculated Along with the randomization of the PWM pulses. we can obtain the effects of spread spectra of votlage, current as in the case of randomly changed switching frequency, To verify the validity of the proposed RPPWM simulation study was tried using Matlab/Simulink The main model described in Simulink block diagrams includes the space vector modulation block pulse position randomization block inverter block 3 phase induction motor block and so on By the simulation study, the harmonics of the output voltage and the current of inverter are predicted in different PWM methods- SVPWM, LLPWM proposed RPPWM.

  • PDF

Adaptation of Space Vector Modulation to Single-Phase High Power PWM Converters (단상 PWM 컨버터에 적용한 공간 벡터 PWM)

  • Lee, Hee-Myun;Lee, Dong-Myung
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.442-443
    • /
    • 2011
  • In this paper, a voltage control method based on DQ transformation and Space Vector Pulse Width Modulation (SVPWM) for a single phase three-level converter is proposed. This control method is designed to use DC values instead of using instantaneous values of current which are usually used in single-phase application, so that it results in a fast and robust voltage control response. Simulation results demonstrate the validity of the control strategies.

  • PDF

Design of the Space Vector Modulation of Servo System using VHDL (VHDL을 이용한 서보시스템의 공간벡터 변조부 설계)

  • 황정원;박승엽
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.5-8
    • /
    • 2001
  • In this paper, we have space vector PWM(Pulse Width Modulation) circuits on the FPGA(Field Programmable Gate Arry) chip designed by VHDL(Very high speed integrated circuit Hardware Description Language). This circuit parts was required at controlling the AC servo motor system and should have been designed with many discrete digital logics. In the result of this study, peripheral circuits are to be simple and the designed logic terms are robust and precise. Because of it's easy verification and implementation, we could deduced that the customize FPGA chip show better performance than that of circuit modules parts constituted of discrete IC.

  • PDF

New Three-Phase Multilevel Inverter with Shared Power Switches

  • Ping, Hew Wooi;Rahim, Nasrudin Abd.;Jamaludin, Jafferi
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.787-797
    • /
    • 2013
  • Despite the advantages offered by multilevel inverters, one of the main drawbacks that prevents their widespread use is their circuit complexity as the number of power switches employed is usually high. This paper presents a new multilevel inverter topology with a considerable reduction in the number of power switches used through the switch-sharing approach. The fact that the proposed inverter applies two bidirectional power switches for sharing among the three phases does not prevent it from producing seven levels in the line-to-line output voltage waveforms. A modified scheme of space vector modulation via the application of virtual voltage vectors is developed to generate the PWM signals of the power switches. The performance of the proposed inverter is investigated through MATLAB/SIMULINK simulations and is practically tested using a laboratory prototype with a DSP-based modulator. The results demonstrate the satisfactory performance of the inverter and verify the effectiveness of the modulation method.

Optimized PWM Switching Strategy for an Induction Motor Voltage Control

  • Lee, Hae-Hyung;Hwang, Seuk-Yung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.527-533
    • /
    • 1998
  • An optimized PWM switching strategy for an induction motor voltage control is developed and demonstrated. Space vector modulation in voltage source inverter offers improved DC-bus utilization and reduced commutation losses, and has been therefor recognizedas the perfered PWM method, especially in the case of digital implementation. Three-phase invertor voltage control by space vector modulation consists of switching between the two active and one zero voltage vector by using the proposed optimal PWM algorithm. The prefered switching sequence is defined as a function of the modulation index and period of a carrier wave. The sequence is selected by suing the inverter switching losses and the current ripple as the criteria. For low and medium power application, the experimental results indicate that good dynamic response and reduced harmonic distortion can be achieved by increasing switching frequency.

  • PDF