• Title/Summary/Keyword: Space time series data

Search Result 232, Processing Time 0.028 seconds

Analysis of Offshore Aquaculture Detection Techniques Using Synthetic Aperture Radar Images (레이더 영상을 이용한 연안 양식장 탐지 기법 분석)

  • Do-Hyun Hwang;Hahn Chul Jung
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1401-1411
    • /
    • 2023
  • In the face of escalating utilization of the marine spatial domain, conflicts have emerged among stakeholders, necessitating effective management strategies beyond conventional government permits and regulations. Particularly within the domain of aquaculture, operational oversight relies on a localized licensing system, posing challenges in accurately assessing the prevailing circumstances. This research employs synthetic aperture radar (SAR) imagery as a tool to monitor coastal aquaculture fish farms, aimed at enhancing insights into management protocols. Leveraging Sentinel-1A imagery and time series SAR data integration, a superimposition technique is utilized, facilitating noise reduction while retaining crucial information regarding smaller-scale facilities, such as fish farms. Through analysis of VH polarization data, a detection overall accuracy of approximately 88% for coastal fish farms was achieved. The findings of this study offer potential applications in the continuous monitoring of aquaculture farms in correspondence with seasonal variations in aquaculture yields, thereby proposing frameworks for the establishment of effective management cycles for marine space utilization.

2D Prestack Generalized-screen Migration (2차원 중합전 일반화된-막 구조보정)

  • Song, Ho-Cheol;Seol, Soon-Jee;Byun, Joong-Moo
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.315-322
    • /
    • 2010
  • The phase-screen and the split-step Fourier migrations, which are implemented in both the frequency-wavenumber and frequency-space domains by using one-way scalar wave equation, allow imaging in laterally heterogeneous media with less computing time and efficiency. The generalized-screen migration employs the series expansion of the exponential, unlike the phase-screen and the split-step Fourier migrations which assume the vertical propagation in frequency-wavenumber domain. In addition, since the generalized-screen migration generalizes the series expansion of the vertical slowness, it can utilize higher-order terms of that series expansion. As a result, the generalized-screen migration has higher accuracy in computing the propagation with wide angles than the phase-screen and split-step Fourier migrations for media with large and rapid lateral velocity variations. In this study, we developed a 2D prestack generalized-screen migration module for imaging a complex subsurface efficiently, which includes various dips and large lateral variations. We compared the generalized-screen propagator with the phase-screen propagator for a constant perturbation model and the SEG/EAGE salt dome model. The generalized-screen propagator was more accurate than the phase-screen propagator in computing the propagation with wide angles. Furthermore, the more the higher-order terms were added for the generalized-screen propagator, the more the accuracy was increased. Finally, we compared the results of the generalizedscreen migration with those of the phase-screen migration for a model which included various dips and large lateral velocity variations and the synthetic data of the SEG/EAGE salt dome model. In the generalized-screen migration section, reflectors were positioned more accurately than in the phase-screen migration section.

A Search for New Variable Stars in the Open Cluster NGC 129 using a Small Telescope (소형망원경을 이용한 산개성단 NGC 129 영역의 변광성 탐사)

  • Lee, Eun-Jung;Jeon, Young-Beom;Lee, Ho;Park, Hong-Suh
    • Journal of the Korean earth science society
    • /
    • v.28 no.1
    • /
    • pp.87-104
    • /
    • 2007
  • As part of the SPVS (Short-Period Variability Survey) which is a wide-field $(90'{\times}60')$ photometric monitering program at Bohyunsan Optical Astronomy (BOAO), we performed V band time-series CCD photometric observations ofthe young open cluster NGC 129 for 11 nights between October 12, 2004 and November 3, 2005 using the 155mm refractor equipped with $3K{\times}2K$ CCD camera. From the observation we obtained 2400 V band CCD frames and color-magnitude diagram of the cluster. To transform instrumental magnitude to standard magnitude, we applied ensemble normalization technique to all observed time-series data. After the photometric reduction process, we examined variations of 9537 stars. As a result, sixty six of the new variable stars were discovered. To determine the periods of the sevariables, we used DFT(Discrete Fourier Transform) and phase-matching technique. According to light curve shape, period, amplitude and the position on a C-M diagram, we classified these variables as 9 SPB type, 9 ${\delta}$ Scuti type, 29 eclipsing, 17 long term variables. However, two of them were not classified. From this study, we learned that small telescopes could be a very useful tool to observe variable stars in the open cluster in survey program.

Analysis of Temporal and Spatial Distribution of Traffic Accidents in Jinju (진주시 교통사고의 시계열적 공간분포특성 분석)

  • Sung, Byeong Jun;Bae, Gyu Han;Yoo, Hwan Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.2
    • /
    • pp.3-9
    • /
    • 2015
  • Since changes in land use in urban space cause traffic volume and it is closely related to traffic accidents. Therefore, an analysis on the causes of traffic accidents is judged to be an essential factor to establish the measure to reduce traffic accidents. In this regard, the analysis was conducted on the clustering by using the nearest neighbor indexes with regard to the occurrence frequencies of commercial and residential zone based on traffic accident data of the past five years (2009-2013) with the target of local small-medium sized city, Jinju-si. The analysis results, obtained in this study, are as follows: the occurrence frequency of traffic accidents was the highest in spring and the lowest in winter respectively. The clustering of traffic accident occurrence at nighttime was stronger than at daytime. In addition, terms of the analysis on the clustering of traffic accident according to land use, changes according to the seasons was not significant in commercial areas, while clustering density in winter tended to become significantly lower in residential areas. The analysis results of traffic accident types showed that the side-right angle collision of cars was the highest in frequency occurrence, and widespread in both commercial areas and residential areas. These results can provide us with important information to identify the occurrence pattern of traffic accidents in the structure of urban space, and it is expected that they will be appropriately utilized to establish measures to reduce traffic accidents.

Changes Detection of Ice Dimension in Cheonji, Baekdu Mountain Using Sentinel-1 Image Classification (Sentinel-1 위성의 영상 분류 기법을 이용한 백두산 천지의 얼음 면적 변화 탐지)

  • Park, Sungjae;Eom, Jinah;Ko, Bokyun;Park, Jeong-Won;Lee, Chang-Wook
    • Journal of the Korean earth science society
    • /
    • v.41 no.1
    • /
    • pp.31-39
    • /
    • 2020
  • Cheonji, the largest caldera lake in Asia, is located at the summit of Baekdu Mountain. Cheonji is covered with snow and ice for about six months of the year due to its high altitude and its surrounding environment. Since most of the sources of water are from groundwater, the water temperature is closely related to the volcanic activity. However, in the 2000s, many volcanic activities have been monitored on the mountain. In this study, we analyzed the dimension of ice produced during winter in Baekdu Mountain using Sentinel-1 satellite image data provided by the European Space Agency (ESA). In order to calculate the dimension of ice from the backscatter image of the Sentinel-1 satellite, 20 Gray-Level Co-occurrence Matrix (GLCM) layers were generated from two polarization images using texture analysis. The method used in calculating the area was utilized with the Support Vector Machine (SVM) algorithm to classify the GLCM layer which is to calculate the dimension of ice in the image. Also, the calculated area was correlated with temperature data obtained from Samjiyeon weather station. This study could be used as a basis for suggesting an alternative to the new method of calculating the area of ice before using a long-term time series analysis on a full scale.

The Prediction of DEA based Efficiency Rating for Venture Business Using Multi-class SVM (다분류 SVM을 이용한 DEA기반 벤처기업 효율성등급 예측모형)

  • Park, Ji-Young;Hong, Tae-Ho
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.139-155
    • /
    • 2009
  • For the last few decades, many studies have tried to explore and unveil venture companies' success factors and unique features in order to identify the sources of such companies' competitive advantages over their rivals. Such venture companies have shown tendency to give high returns for investors generally making the best use of information technology. For this reason, many venture companies are keen on attracting avid investors' attention. Investors generally make their investment decisions by carefully examining the evaluation criteria of the alternatives. To them, credit rating information provided by international rating agencies, such as Standard and Poor's, Moody's and Fitch is crucial source as to such pivotal concerns as companies stability, growth, and risk status. But these types of information are generated only for the companies issuing corporate bonds, not venture companies. Therefore, this study proposes a method for evaluating venture businesses by presenting our recent empirical results using financial data of Korean venture companies listed on KOSDAQ in Korea exchange. In addition, this paper used multi-class SVM for the prediction of DEA-based efficiency rating for venture businesses, which was derived from our proposed method. Our approach sheds light on ways to locate efficient companies generating high level of profits. Above all, in determining effective ways to evaluate a venture firm's efficiency, it is important to understand the major contributing factors of such efficiency. Therefore, this paper is constructed on the basis of following two ideas to classify which companies are more efficient venture companies: i) making DEA based multi-class rating for sample companies and ii) developing multi-class SVM-based efficiency prediction model for classifying all companies. First, the Data Envelopment Analysis(DEA) is a non-parametric multiple input-output efficiency technique that measures the relative efficiency of decision making units(DMUs) using a linear programming based model. It is non-parametric because it requires no assumption on the shape or parameters of the underlying production function. DEA has been already widely applied for evaluating the relative efficiency of DMUs. Recently, a number of DEA based studies have evaluated the efficiency of various types of companies, such as internet companies and venture companies. It has been also applied to corporate credit ratings. In this study we utilized DEA for sorting venture companies by efficiency based ratings. The Support Vector Machine(SVM), on the other hand, is a popular technique for solving data classification problems. In this paper, we employed SVM to classify the efficiency ratings in IT venture companies according to the results of DEA. The SVM method was first developed by Vapnik (1995). As one of many machine learning techniques, SVM is based on a statistical theory. Thus far, the method has shown good performances especially in generalizing capacity in classification tasks, resulting in numerous applications in many areas of business, SVM is basically the algorithm that finds the maximum margin hyperplane, which is the maximum separation between classes. According to this method, support vectors are the closest to the maximum margin hyperplane. If it is impossible to classify, we can use the kernel function. In the case of nonlinear class boundaries, we can transform the inputs into a high-dimensional feature space, This is the original input space and is mapped into a high-dimensional dot-product space. Many studies applied SVM to the prediction of bankruptcy, the forecast a financial time series, and the problem of estimating credit rating, In this study we employed SVM for developing data mining-based efficiency prediction model. We used the Gaussian radial function as a kernel function of SVM. In multi-class SVM, we adopted one-against-one approach between binary classification method and two all-together methods, proposed by Weston and Watkins(1999) and Crammer and Singer(2000), respectively. In this research, we used corporate information of 154 companies listed on KOSDAQ market in Korea exchange. We obtained companies' financial information of 2005 from the KIS(Korea Information Service, Inc.). Using this data, we made multi-class rating with DEA efficiency and built multi-class prediction model based data mining. Among three manners of multi-classification, the hit ratio of the Weston and Watkins method is the best in the test data set. In multi classification problems as efficiency ratings of venture business, it is very useful for investors to know the class with errors, one class difference, when it is difficult to find out the accurate class in the actual market. So we presented accuracy results within 1-class errors, and the Weston and Watkins method showed 85.7% accuracy in our test samples. We conclude that the DEA based multi-class approach in venture business generates more information than the binary classification problem, notwithstanding its efficiency level. We believe this model can help investors in decision making as it provides a reliably tool to evaluate venture companies in the financial domain. For the future research, we perceive the need to enhance such areas as the variable selection process, the parameter selection of kernel function, the generalization, and the sample size of multi-class.

Analysis of Turbulence on a Merge Influence Section in Uninterrupted Facility (연속류도로 합류영향구간 교통류 난류현상 분석)

  • Kim, Hyun-Sang;Do, Tcheol-Woong
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.217-228
    • /
    • 2009
  • Sections under the influence of merging in an uninterrupted facility create irregular interaction between vehicles, such as lane change, speed acceleration and deceleration because of the merging of ramp traffic flows which have traffic characteristics different from those of the main line. This causes a confused traffic flow phenomenon(turbulence), which is considered an unstable traffic characteristic between various continuous points in consideration of v conditions. In this study, in merge influence sections, detectors by lane-point were installed to create time and space-series -traffic data. The least significant difference(LSD), as the criteria for discriminating a significant speed change between points, was calculated to examine the turbulence. As a result, turbulence in merge influence section was found to change the zones of such occurrence and the seriousness levels according to traffic condition. Thus, the maximum merge influence section due to the turbulence was created in the traffic condition before congestion when traffic increases. According to characteristics of changes in speed, merge influence section was divided into upstream 100m$\sim$downstream 100m(a section of speed reduction), and downstream 100m$\sim$downstream 400m(a section of reduced speed maintenance and acceleration).

  • PDF

Structural Design of FCM-based Fuzzy Inference System : A Comparative Study of WLSE and LSE (FCM기반 퍼지추론 시스템의 구조 설계: WLSE 및 LSE의 비교 연구)

  • Park, Wook-Dong;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.981-989
    • /
    • 2010
  • In this study, we introduce a new architecture of fuzzy inference system. In the fuzzy inference system, we use Fuzzy C-Means clustering algorithm to form the premise part of the rules. The membership functions standing in the premise part of fuzzy rules do not assume any explicit functional forms, but for any input the resulting activation levels of such radial basis functions directly depend upon the distance between data points by means of the Fuzzy C-Means clustering. As the consequent part of fuzzy rules of the fuzzy inference system (being the local model representing input output relation in the corresponding sub-space), four types of polynomial are considered, namely constant, linear, quadratic and modified quadratic. This offers a significant level of design flexibility as each rule could come with a different type of the local model in its consequence. Either the Least Square Estimator (LSE) or the weighted Least Square Estimator (WLSE)-based learning is exploited to estimate the coefficients of the consequent polynomial of fuzzy rules. In fuzzy modeling, complexity and interpretability (or simplicity) as well as accuracy of the obtained model are essential design criteria. The performance of the fuzzy inference system is directly affected by some parameters such as e.g., the fuzzification coefficient used in the FCM, the number of rules(clusters) and the order of polynomial in the consequent part of the rules. Accordingly we can obtain preferred model structure through an adjustment of such parameters of the fuzzy inference system. Moreover the comparative experimental study between WLSE and LSE is analyzed according to the change of the number of clusters(rules) as well as polynomial type. The superiority of the proposed model is illustrated and also demonstrated with the use of Automobile Miles per Gallon(MPG), Boston housing called Machine Learning dataset, and Mackey-glass time series dataset.

Intra-night optical variability of AGN in COSMOS field

  • Kim, Joonho;Karouzos, Marios;Im, Myungshin;Kim, Dohyeong;Jun, Hyunsung David;Lee, Joon Hyeop;Pallerola, Mar Mezcua
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.45.1-45.1
    • /
    • 2017
  • Optical variability is one way to probe the nature of the central engine of AGN at smaller linear scales, and previous studies have shown that optical variability of AGN is more prevalent at longer timescales and at shorter wavelengths. To understand the properties and physical mechanism of variability, we are performing the KMTNet Active Nuclei Variability Survey (KANVaS). Especially, we investigated intra-night variability of AGN with KMTNet data which observed COSMOS field during 3 separate nights from 2015 to 2016 in B, V, R, and I bands. Each night was composed of 5, 9, and 11 epochs with 20-30 min cadence. To find AGN in the COSMOS field, we applied multi-wavelength selection methods. Using X-ray, mid-infrared, and radio selection methods, 50-60, 130-220, 20-40 number of AGN are detected, respectively. Achieving photometric uncertainty ~0.01mag by differential photometry, we employed a standard time-series analysis tool to identify variable AGN, chi-square test. Preliminary results indicate that there is no evidence of intra-night optical variability of AGN. It is possible that previous studies discovered intra-night variability used inappropriate photometric error. However, main reason seems that our targets have fainter magnitude (higher photometric error) than that of previous studies. To discover variability of AGN, we will investigate longer timescale variability of AGN.

  • PDF

Demand Forecasts Analysis of Electric Vehicles for Apartment in 2020 (2020년 아파트의 전기자동차 수요예측 분석 연구)

  • Byun, Wan-Hee;Lee, Ki-Hong;Lee, Sang-Hyuk;Kee, Ho-Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.3
    • /
    • pp.81-91
    • /
    • 2012
  • The world has been replacing fast fossil fuels vehicles with electric vehicles(EVs) to cope with climate change. The government set a goal which EVs will be substitute at least 10% of the domestic small vehicles with EVs until 2020, and will try to build electric charging infrastructures in apartments with the revision the law of 'the housing construction standards'. In apartments the EVs charging infrastructure and parking space is, essential to accomplish the goal. But the studies on EVs demand are few. In this study, we predicted that the demand for EVs using time-series analysis of statistical data, survey results for apartments residents in the metropolitan area. As a result, the ratio of the EVs appeared to be 6~21% for the total vehicles in a rental apartments for the years 2020, 21~39% in apartments for sales. For the EVs, the maximum power required for 1,000 households in rental apartment is predicted to be about 4200 kwh on a daily basis, while the maximum power in the apartment for sales is predicted to be 7800kwh.