• Title/Summary/Keyword: Space time modulation

Search Result 212, Processing Time 0.027 seconds

Differential space-time coded OFDM using multiple symbol decoding (다중 심벌 디코딩을 이용한 차동 시공간 부호화된 OFDM)

  • Yoo Hang-Youal;Kim Seung-Youal;Kim Chong-Il
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.3 no.1 s.4
    • /
    • pp.117-125
    • /
    • 2004
  • Space-time coding and modulation exploit the presence of multiple transmit antennas to improve performance on multipath Rayleigh fading channels. In this paper, we propose the Trellis-Coded Differential Space Time Modulation-OFDM system with multiple symbol detection. The Trellis-code perform the set partition with unitary group codes. The Viterbi decoder containing new branch metrics is introduced in order to improve the bit error rate (BER) in the differential detection of the Unitary differential space time modulation. Also, we describe the Viterbi algorithm in order to use this branch metrics. Our study shows that such a Viterbi decoder improves BER performance without sacrificing bandwidth and power efficiency.

  • PDF

Multiple Symbol Detection of Trellis coded Differential space-time modulation for OFDM (OFDM에서 트렐리스 부호화된 차동 시공간 변조의 다중 심벌 검파)

  • 유항열;한상필;김진용;김성열;김종일
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.3
    • /
    • pp.223-229
    • /
    • 2004
  • Recently, OFDM and STC techniques have been considered to be candidate to support multimedia services in the next generation mobile radio communications and have been developed the many communications systems in order to achieve the high data rates. In this paper, we propose the Trellis-Coded Differential Space Time Modulation-OFDM system with multiple symbol detection. The Trellis-code performs the set partition with unitary group codes. The Viterbi decoder containing new branch metrics is introduced in order to improve the bit error rate (BER) in the differential detection of the unitary differential space time modulation. Also, we describe the Viterbi algorithm in order to use this branch metrics. Our study shows that such a Viterbl decoder improves BER performance without sacrificing bandwidth and power efficiency.

  • PDF

Analysis and Control of Z-Source Inverter using Modified Space Vector Methods (변형 공간벡터방식을 사용한 Z-Source 인버터의 해석 및 제어)

  • Chun, Tae-Won;Tran, Quang-Vinh;Kim, Heung-Gun;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.332-338
    • /
    • 2007
  • In this paper, the three modified space vector modulation methods are suggested in order to control effectively the shoot-through time at Z-source inverter. Both the switching patterns of three modulation methods and the modulation signals with a variation of shoot-through time are analyzed. The optimum modified space vector modulation method is determined by both the control range of the shoot-through time and the symmetry of the switching pattern and modulation signal. The performances of modulation methods are verified with the simulation results with 32-bit DSP.

Analysis of Spatial Modulation MIMO Reception Performance for UHDTV Broadcasting (UHDTV 방송을 위한 공간 변조 다중 안테나 시스템 수신 성능 분석)

  • Park, Myung Chul;Han, Dong Seog
    • Journal of Broadcast Engineering
    • /
    • v.20 no.6
    • /
    • pp.837-847
    • /
    • 2015
  • In this paper, the reception performance of spatial modulation multiple-output multiple-input (MIMO) is analyzed for high speed terrestrial broadcasting. The MIMO scheme is required to reduce the inter symbol interference (ISI) and spatial correlation. The spatial modulation scheme solves the problem of ISI, but the spatial correlation degrades the reception performance of SM scheme. The space-time block coded spatial modulation (STBC-SM) is combined the SM system with space-time block code (STBC) for reducing the effects of the spatial correlation. However, the STBC-SM scheme degrades the spectral efficiency by transmitting same data in the two symbol period. The double space-time transmit diversity with spatial modulation (DSTTD-SM) scheme transmits the data with full antenna combination. To adapt these SM MIMO systems into the terrestrial broadcasting system, the reception performance is analyzed using computer simulation in SUI channel environments.

Improved Differential Detection Scheme of Space-Time Trellis Coded MDPSK For MIMO (MIMO에서 시공간 부호화된 MDPSK의 성능을 향상시키기 위한 차동 검파 시스템)

  • Kim, Chong-Il;Lee, Ho-Jin;Yoo, Hang-Youal;Kim, Jin-Yong;Kim, Seung-Youal
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.10
    • /
    • pp.1869-1876
    • /
    • 2006
  • Recently, STC techniques have been considered to be candidate to support multimedia services in the next generation mobile radio communications and have been developed the many communications systems in order to achieve the high data rates. In this paper, we Nose the Trellis-Coded Differential Space Time Modulation system with multiple symbol detection. The Trellis-code performs the set partition with unitary group codes. The Viterbi decoder containing new branch metrics is introduced in order to improve the bit error rate (BER) in the differential detection of the unitary differential space time modulation. Also, we describe the Viterbi algorithm in order to use this branch metrics. Our study shows that such a Viterbi decoder improves BER performance without sacrificing bandwidth and power efficiency.

Exact Bit Error Probability of Orthogonal Space-Time Block Codes with Quadrature Amplitude Modulation

  • Kim, Sang-Hyo;Yang, Jae-Dong;No, Jong-Seon
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.253-257
    • /
    • 2008
  • In this paper, the performance of generic orthogonal space-time block codes (OSTBCs) introduced by Alamouti [2], Tarokh [3], and Su and Xia [11] is analyzed. We first define one-dimensional component symbol error function (ODSEF) from the exact expression of the pairwise error probability of an OSTBC. Utilizing the ODSEF and the bit error probability (BEP) expression for quadrature amplitude modulation (QAM) introduced by Cho and Yoon [9], the exact closed-form expressions for the BEP of linear OSTBCs with QAM in quasi-static Rayleigh fading channel are derived. We also derive the exact closed-form of the BEP for some OSTBCs which have at least one message symbol transmitted with unequal power via all transmit antennas.

Iterative Multiple Symbol Differential Detection for Turbo Coded Differential Unitary Space-Time Modulation

  • Vanichchanunt, Pisit;Sangwongngam, Paramin;Nakpeerayuth, Suvit;Wuttisittikulkij, Lunchakorn
    • Journal of Communications and Networks
    • /
    • v.10 no.1
    • /
    • pp.44-54
    • /
    • 2008
  • In this paper, an iterative multiple symbol differential detection for turbo coded differential unitary space-time modulation using a posteriori probability (APP) demodulator is investigated. Two approaches of different complexity based on linear prediction are presented to utilize the temporal correlation of fading for the APP demodulator. The first approach intends to take account of all possible previous symbols for linear prediction, thus requiring an increase of the number of trellis states of the APP demodulator. In contrast, the second approach applies Viterbi algorithm to assist the APP demodulator in estimating the previous symbols, hence allowing much reduced decoding complexity. These two approaches are found to provide a trade-off between performance and complexity. It is shown through simulation that both approaches can offer significant BER performance improvement over the conventional differential detection under both correlated slow and fast Rayleigh flat-fading channels. In addition, when comparing the first approach to a modified bit-interleaved turbo coded differential space-time modulation counterpart of comparable decoding complexity, the proposed decoding structure can offer performance gain over 3 dB at BER of $10^{-5}$.

Serially Concatenated Space-Time Code using Iterative Decoding of High Data Rate Wireless Communication (고속 무선 통신을 위한 반복 복호 직렬 연쇄 시.공간 부호)

  • 김웅곤;구본진;양하영;강창언;홍대식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.4A
    • /
    • pp.519-527
    • /
    • 2000
  • This paper suggests and analyzes the Serially Concatenated Space-Time Code(SCSTC) with the possibility of a efficient high-speed transmission in a band limited channel. The suggested code has a structure that uses the interleaver to connect the space-time code as an inner code and the convolutional code as a outer code serially. This code keeps the advantage of high-speed transmission and also has the high BER performance. The performance of the suggested system is compared with the conventional bandwidth efficient trellis coded modulation, such as a Serially Concatenated Trellis Coded Modulation (SCTCM) and a Turbo-Trellis Coded Modulation(Turbo-TCM). The results show that the suggested system has a 2.8dB and 3dB better BER performance than SCTCM and Turbo-TCM respectively in case of the transmission rate 2b/s/Hz in fading channel.

  • PDF

An Efficient Scheme to Achieve Differential Unitary Space-Time Modulation on MIMO-OFDM Systems

  • Liu, Shou-Yin;Chong, Jong-Wha
    • ETRI Journal
    • /
    • v.26 no.6
    • /
    • pp.565-574
    • /
    • 2004
  • Differential unitary space-time modulation (DUSTM) has emerged as a promising technique to obtain spatial diversity without intractable channel estimation. This paper presents a study of the application of DUSTM on multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems with frequency-selective fading channels. From the view of a correlation analysis between subcarriers of OFDM, we obtain the maximum achievable diversity of DUSTM on MIMO-OFDM systems. Moreover, an efficient implementation strategy based on subcarrier reconstruction is proposed, which transmits all the signals of one signal matrix in one OFDM transmission and performs differential processing between two adjacent OFDM blocks. The proposed method is capable of obtaining both spatial and multipath diversity while reducing the effect of time variation of channels to a minimum. The performance improvement is confirmed by simulation results.

  • PDF