• Title/Summary/Keyword: Space exploration

Search Result 795, Processing Time 1.276 seconds

RADIO IDENTIFICATIONS IN THE NEP DEEP FIELD

  • White, Glenn J.;Soto, Laia Barrufet de;Pearson, Chris;Serjeant, Stephen;Lim, Tanya;Matsuhara, Hideo;Sirothia, S.K.;Pal, S.;Karouzos, Marios;AKARI-NEP Team
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.231-233
    • /
    • 2017
  • We have imaged the AKARI Deep Field with the GMRT radio telescope at 610 MHz, detecting 1224 radio components, which are optically identified with 455 optical galaxies having a mean r' magnitude brighter of 22.5 (to a completeness limit of 25.4 mag), and an average redshift ~ 0.8.

Analysis on Delta-Vs to Maintain Extremely Low Altitude on the Moon and Its Application to CubeSat Mission

  • Song, Young-Joo;Lee, Donghun;Kim, Young-Rok;Jin, Ho;Choi, Young-Jun
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.213-223
    • /
    • 2019
  • This paper analyzes delta-Vs to maintain an extremely low altitude on the Moon and investigates the possibilities of performing a CubeSat mission. To formulate the station-keeping (SK) problem at an extremely low altitude, current work has utilized real-flight performance proven software, the Systems Tool Kit Astrogator by Analytical Graphics Inc. With a high-fidelity force model, properties of SK maneuver delta-Vs to maintain an extremely low altitude are successfully derived with respect to different sets of reference orbits; of different altitudes as well as deadband limits. The effect of the degree and order selection of lunar gravitational harmonics on the overall SK maneuver strategy is also analyzed. Based on the derived SK maneuver delta-V costs, the possibilities of performing a CubeSat mission are analyzed with the expected mission lifetime by applying the current flight-proven miniaturized propulsion system performances. Moreover, the lunar surface coverage as well as the orbital characteristics of a candidate reference orbit are discussed. As a result, it is concluded that an approximately 15-kg class CubeSat could maintain an orbit (30-50 km reference altitude having ${\pm}10km$ deadband limits) around the Moon for 1-6 months and provide almost full coverage of the lunar surface.

Online Adaptation of Control Parameters with Safe Exploration by Control Barrier Function (제어 장벽함수를 이용한 안전한 행동 영역 탐색과 제어 매개변수의 실시간 적응)

  • Kim, Suyeong;Son, Hungsun
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.1
    • /
    • pp.76-85
    • /
    • 2022
  • One of the most fundamental challenges when designing controllers for dynamic systems is the adjustment of controller parameters. Usually the system model is used to get the initial controller, but eventually the controller parameters must be manually adjusted in the real system to achieve the best performance. To avoid this manual tuning step, data-driven methods such as machine learning were used. Recently, reinforcement learning became one alternative of this problem to be considered as an agent learns policies in large state space with trial-and-error Markov Decision Process (MDP) which is widely used in the field of robotics. However, on initial training step, as an agent tries to explore to the new state space with random action and acts directly on the controller parameters in real systems, MDP can lead the system safety-critical system failures. Therefore, the issue of 'safe exploration' became important. In this paper we meet 'safe exploration' condition with Control Barrier Function (CBF) which converts direct constraints on the state space to the implicit constraint of the control inputs. Given an initial low-performance controller, it automatically optimizes the parameters of the control law while ensuring safety by the CBF so that the agent can learn how to predict and control unknown and often stochastic environments. Simulation results on a quadrotor UAV indicate that the proposed method can safely optimize controller parameters quickly and automatically.

The Study of development on Space Construction - Focus on foreign research trends - (우주건설의 향후 개발방향에 대한 연구 - 해외 우주건설 동향을 중심으로 -)

  • Kang, Ji-Hoon;Zia, Ud-Din;Koo, Ja-Kyung;Lee, Tai-Sik
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.828-832
    • /
    • 2008
  • In 2004, The U.S president Bush announces space Exploration Vision included in Lunar outpost plan. Following the Space Exploration Vision announced by Bush, NASA made Construction Roadmap and studied space construction varietly to construct Lunar Outpost in 2025. The purpose to construct Lunar outpost is to develop space science and hitech industry and to secure the lunar materials. Especially, Lunar has more than 5billion ton He-3. In this reason, The countries advanced in Space Industry like U.S., Japan, Europe and China is studying space construction to mine Lunar materials and shelter to live. In this paper, We will make definition and necesarity of space construction and research Space Construction research trends to use for the preparation of Korea's space construction roadmap.

  • PDF

Practical Algorithms on Lunar Reference Frame Transformations for Korea Pathfinder Lunar Orbiter Flight Operation

  • Song, Young-Joo;Lee, Donghun;Kim, Young-Rok;Bae, Jonghee;Park, Jae-ik;Hong, SeungBum;Kim, Dae-Kwan;Lee, Sang-Ryool
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.185-192
    • /
    • 2021
  • This technical paper deals the practical transformation algorithms between several lunar reference frames which will be used for Korea pathfinder lunar orbiter (KPLO) flight operation. Despite of various lunar reference frame definitions already exist, use of a common transformation algorithm while establishing lunar reference frame is very important for all members related to KPLO mission. This is because use of slight different parameters during frame transformation may result significant misleading while reprocessing data based on KPLO flight dynamics. Therefore, details of practical transformation algorithms for the KPLO mission specific lunar reference frames is presented with step by step implementation procedures. Examples of transformation results are also presented to support KPLO flight dynamics data user community which is expected to give practical guidelines while post processing the data as their needs. With this technical paper, common understandings of reference frames that will be used throughout not only the KPLO flight operation but also science data reprocessing can be established. It is expected to eliminate, or at least minimize, unnecessary confusion among all of the KPLO mission members including: Korea Aerospace Research Institute (KARI), National Aeronautics and Space Administration (NASA) as well as other organizations participating in KPLO payload development and operation, or further lunar science community world-wide who are interested in KPLO science data post processing.

Ground Stations of Korean Deep Space Network for Lunar Explorations (달 탐사를 위한 한국형 심우주 지상국)

  • Kim, Sang-Goo;Yoon, Dong-Weon;Hyun, Kwang-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.499-506
    • /
    • 2010
  • Many countries of the world have been launched the competition of space development and Korea also has a plan for the launch of Lunar orbiter in 2020 and Lunar lander in 2025 for Lunar explorations. For the success of the planned Lunar exploration, we need to enhance the required deep space communication technologies. To achieve our goals, we should develop space communications system and Korean DSN (deep space network) based on experiences and technologies through cooperation with the advanced countries in the field of deep space exploration. In this paper, we investigate overseas DSNs and deep space communication systems, and present the link margin and other technical requirements for successful DSN deployment. In addition, we propose a best strategy to secure domestic ground stations for the Korean Lunar exploration missions.

OVERVIEW OF THE NORTH ECLIPTIC POLE DEEP MULTI-WAVELENGTH SURVEY (NEP-DEEP)

  • Matsuhara, H.;Wada, T.;Takagi, T.;Nakagawa, T.;Murata, K.;Churei, S.;Goto, T.;Oyabu, S.;Takeuchi, T.T.;Ohyama, Y.;Miyaji, T.;Krumpe, M.;Lee, H.M.;Im, M.;Serjeant, S.;Peason, C.P.;White, G.;Malkan, M.A.;Hanami, H.;Ishigaki, T.;Burgarella, D.;AKARI NEP Team, AKARI NEP Team
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.123-128
    • /
    • 2012
  • An overview of the North Ecliptic Pole (NEP) deep multi-wavelength survey covering from X-ray to radio wavelengths is presented. The main science objective of this multi-wavelength project is to unveil the star-formation and AGN activities obscured by dust in the violent epoch of the Universe (z=0.5-2), when the star formation and black-hole evolution activities were much stronger than the present. The NEP deep survey with AKARI/IRC consists of two survey projects: shallow wide (8.2 sq. deg, NEP-Wide) and the deep one (0.6 sq. deg, NEP-Deep). The NEP-Deep provides us with a $15{\mu}m$ or $18{\mu}m$ selected sample of several thousands of galaxies, the largest sample ever made at these wavelengths. A continuous filter coverage at mid-IR wavelengths (7, 9, 11, 15, 18, and $24{\mu}m$) is unique and vital to diagnose the contribution from starbursts and AGNs in the galaxies at the violent epoch. The recent updates of the ancillary data are also provided: optical/near-IR magnitudes (Subaru, CFHT), X-ray (Chandra), FUV/NUV (GALEX), radio (WSRT, GMRT), optical spectra (Keck/DEIMOS etc.), Subaru/FMOS, Herschel/SPIRE, and JCMT/SCUBA-2.

A RFID-Based Multi-Robot Management System Available in Indoor Environments (실내 환경에서 운영 가능한 RFID 기반 멀티 로봇 관리 시스템)

  • An, Sang-Sun;Shin, Sung-Oog;Lee, Jeong-Oog;Baik, Doo-Kwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.6
    • /
    • pp.13-24
    • /
    • 2008
  • The multi robot operation technique has emerged as one of the most important research subjects that focus on minimizing redundancy in space exploration and maximizing the efficiency of operation. For an efficient operation of the multi robot systems, the movement of each Single robot in the multi robot systems should be properly observed and controlled. This paper suggests Multi Robot Management System to minimize redundancy in space exploration by assigning exploration space to each robot efficiently to take advantage of the RFID. Also, this paper has suggested fault tolerance technique that detects disable Single robot and substitute it by activated Single robot in order to ensure overall exploration and improve efficiency of exploration. Proposed system overcomes previous fault that it is difficult for central server to detect exact position of robot by using RFID system and Home Robot. Designated Home robot manages each Single robot efficiently and assigns the best suited space to Single robot by using RFID Tag Information. Proposed multi robot management system uses RFID for space assignment, Localization and Mapping efficiently and not only maximizes the efficiency of operation, but also ensures reliability by supporting fault-tolerance, compared with Single robot system. Also, through simulation, this paper proves efficiency of spending time and redundancy rates between multi robot management applied by proposed system and not applied by proposed system.

  • PDF