• Title/Summary/Keyword: Space cost

Search Result 1,888, Processing Time 0.036 seconds

The Shape Optimization of PLA Polymer Space Truss Using 3D Printer (3D 프린터를 활용한 PLA 폴리머 Space Truss의 최적화)

  • Bae, Jae-Hoon;Zhang, Zhi-Yu;Ju, Young K.
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.1
    • /
    • pp.61-67
    • /
    • 2020
  • In the era of the Fourth Industrial Revolution, Various attempts are being made to converge new industries with IT industry to find new growth engines in the field of IT, maximizing efficiency in terms of productivity. 3D printers are also related to this, and various studies have been conducted worldwide to utilize them in the construction industry. At present, there is an active effort to study atypical structures using 3D printers. The most widely used method is the use of glass panels, however, the additional cost of the manufacturing process and thus the overall project cost cannot be ignored. In addition, the construction of the curvature of the existing two-way curved surface in the conventional flat joint method is not suitable for implementing an amorphous shape. In this paper, we propose an optimized shape through Abaqus analysis of various shapes of Space Truss interior using 3D printing technology using polymer.

Ground Station Design for STSAT-3

  • Kim, Kyung-Hee;Bang, Hyo-Choong;Chae, Jang-Soo;Park, Hong-Young;Lee, Sang-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.283-287
    • /
    • 2011
  • Science and Technology Satellite-3 (STSAT-3) is a 150 kg class micro satellite based with the national space program. The STSAT-3 system consists of a space segment, ground segment, launch service segment, and various external interfaces including additional ground stations to support launch and early operation phases. The major ground segment is the ground station at the Satellite Technology Research Center, Korea Advanced Institute of Science and Technology site. The ground station provides the capability to monitor and control STSAT-3, conduct STSAT-3 mission planning, and receive, process, and distribute STSAT-3 payload data to satisfy the overall missions of STSAT-3. The ground station consists of the mission control element and the data receiving element. This ground station is designed with the concept of low cost and high efficiency. In this paper, the requirements and design of the ground station that has been developed are examined.

A Study on Cost Estimate for Building Parts in the Schematic Design Phase -Focusing on Educational Research Facility- (부분별 코스트산정법을 활용한 계획설계 비용예측에 관한 연구 - 교육연구시설을 중심으로 -)

  • Kim, Yo-Han;Lee, Baek-Rae;Kim, Ju-Hyung;Kim, Jae-Jun
    • Journal of KIBIM
    • /
    • v.1 no.1
    • /
    • pp.18-25
    • /
    • 2011
  • Construction cost estimation in the early phase provides the opportunity to make reasonable decisions related to the project. For estimating this cost, various methods have been developed. But several problems have been recognized like accuracy, relation beteewn design and cost etc. In this study, we developed the method of cost estimating for building parts. The modified method has defferent ratio of space functions to calculate cost more correctly. Also historical cost data is used in this modified method for architects to estimate cost conveniently. By this modified method, we expects architects should easily design buildings based on cost.

Learning Optimal Trajectory Generation for Low-Cost Redundant Manipulator using Deep Deterministic Policy Gradient(DDPG) (저가 Redundant Manipulator의 최적 경로 생성을 위한 Deep Deterministic Policy Gradient(DDPG) 학습)

  • Lee, Seunghyeon;Jin, Seongho;Hwang, Seonghyeon;Lee, Inho
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.1
    • /
    • pp.58-67
    • /
    • 2022
  • In this paper, we propose an approach resolving inaccuracy of the low-cost redundant manipulator workspace with low encoder and low stiffness. When the manipulators are manufactured with low-cost encoders and low-cost links, the robots can run into workspace inaccuracy issues. Furthermore, trajectory generation based on conventional forward/inverse kinematics without taking into account inaccuracy issues will introduce the risk of end-effector fluctuations. Hence, we propose an optimization for the trajectory generation method based on the DDPG (Deep Deterministic Policy Gradient) algorithm for the low-cost redundant manipulators reaching the target position in Euclidean space. We designed the DDPG algorithm minimizing the distance along with the jacobian condition number. The training environment is selected with an error rate of randomly generated joint spaces in a simulator that implemented real-world physics, the test environment is a real robotic experiment and demonstrated our approach.

A Partition Mining Method of Sequential Patterns using Suffix Checking (서픽스 검사를 이용한 단계적 순차패턴 분할 탐사 방법)

  • 허용도;조동영;박두순
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.5
    • /
    • pp.590-598
    • /
    • 2002
  • For efficient sequential pattern mining, we need to reduce the cost to generate candidate patterns and searching space for the generated ones. Although Apriori-like methods like GSP[8] are simple, they have some problems such as generating of many candidate patterns and repetitive searching of a large database. PrefixSpan[2], which was proposed as an alternative of GSP, constructs the prefix projected databases which are stepwise partitioned in the mining process. It can reduce the searching space to estimate the support of candidate patterns, but the construction cost of projected databases is still high. To solve these problems, we proposed SuffixSpan(Suffix checked Sequential Pattern mining) as a new sequential pattern mining method. It generates a small size of candidate pattern sets using partition property and suffix property at a low cost and also uses 1-prefix projected databases as the searching space in order to reduce the cost of estimating the support of candidate patterns.

  • PDF

Evaluation of a Solar Flare Forecast Model with Value Score

  • Park, Jongyeob;Moon, Yong-Jae;Lee, Kangjin;Lee, Jaejin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.80.1-80.1
    • /
    • 2016
  • There are probabilistic forecast models for solar flare occurrence, which can be evaluated by various skill scores (e.g. accuracy, critical success index, heidek skill score, and true skill score). Since these skill scores assume that two types of forecast errors (i.e. false alarm and miss) are equal or constant, which does not take into account different situations of users, they may be unrealistic. In this study, we make an evaluation of a probabilistic flare forecast model [Lee et al., 2012] which use sunspot groups and its area changes as a proxy of flux emergence. We calculate daily solar flare probabilities from 2011 to 2014 using this model. The skill scores are computed through contingency tables as a function of forecast probability, which corresponds to the maximum skill score depending on flare class and type of a skill score. We use a value score with cost/loss ratio, relative importance between the two types of forecast errors. The forecast probability (y) is linearly changed with the cost/loss ratio (x) in the form of y=ax+b: a=0.88; b=0 (C), a=1.2; b=-0.05(M), a=1.29; b=-0.02(X). We find that the forecast model has an effective range of cost/loss ratio for each class flare: 0.536-0.853(C), 0.147-0.334(M), and 0.023-0.072(X). We expect that this study would provide a guideline to determine the probability threshold and the cost/loss ratio for space weather forecast.

  • PDF

A Data Mining Approach for Selecting Bitmap Join Indices

  • Bellatreche, Ladjel;Missaoui, Rokia;Necir, Hamid;Drias, Habiba
    • Journal of Computing Science and Engineering
    • /
    • v.1 no.2
    • /
    • pp.177-194
    • /
    • 2007
  • Index selection is one of the most important decisions to take in the physical design of relational data warehouses. Indices reduce significantly the cost of processing complex OLAP queries, but require storage cost and induce maintenance overhead. Two main types of indices are available: mono-attribute indices (e.g., B-tree, bitmap, hash, etc.) and multi-attribute indices (join indices, bitmap join indices). To optimize star join queries characterized by joins between a large fact table and multiple dimension tables and selections on dimension tables, bitmap join indices are well adapted. They require less storage cost due to their binary representation. However, selecting these indices is a difficult task due to the exponential number of candidate attributes to be indexed. Most of approaches for index selection follow two main steps: (1) pruning the search space (i.e., reducing the number of candidate attributes) and (2) selecting indices using the pruned search space. In this paper, we first propose a data mining driven approach to prune the search space of bitmap join index selection problem. As opposed to an existing our technique that only uses frequency of attributes in queries as a pruning metric, our technique uses not only frequencies, but also other parameters such as the size of dimension tables involved in the indexing process, size of each dimension tuple, and page size on disk. We then define a greedy algorithm to select bitmap join indices that minimize processing cost and verify storage constraint. Finally, in order to evaluate the efficiency of our approach, we compare it with some existing techniques.

Optimal Sizing of In-Plant and Leased Storage Spaces under a Randomized Storage Policy (임의 저장방식 하에서 기업 내 저장공간과 외부의 임차공간에 대한 최적 규모 결정)

  • Lee, Moon-Kyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.30 no.4
    • /
    • pp.294-300
    • /
    • 2004
  • This paper considers a trade-off effect between in-house storage space and leased storage space in generic warehouses operated under a randomized storage assignment policy. The amount of in-house storage space is determined based on the law of large numbers satisfying a given service level of protection against space shortages. Excess space requirement is assumed to be met via leased storage space. A new analytic model is formulated for determining the excess space such that the total cost of storage space is minimized. Finally, computational results are provided for the systems where the standard economic-order-quantity inventory model is used for all items.

A Study on a Method of Making the Matrix far the Numerical Analysis of Underground Temperature (지하공간온도의 수치해석을 위한 행렬 구성방법에 관한 연구)

  • 정수일
    • Tunnel and Underground Space
    • /
    • v.11 no.1
    • /
    • pp.36-41
    • /
    • 2001
  • It is often said that the supply of fossil fuels in use for energy source will last only for 40 years. Futhermore, statistics shows that most of the fuels are imported from outside and that 30-40% of total cost for housing in Korea. One of those methods for reducing the energy cost for housing is to use underground space. Being used well, it may bring a considerable saving of energy since the underground space keeps its air cool in summer and warm in winter. To use underground space, we need to analyse its temperature first. For this purpose, what is generally used is the numerical analysis with the use of nodal system. That is, we can calculate a specific underground temperature with the matrix of thermal resistance after we make a nodal system. However, the existing numerical analysis programs need usually high cost and require a computer with large capacity. So they are seldom used in practice. Considering such problems, this study seeks to find a method for making the matrix of thermal resistance operatable on PC level.

  • PDF