• Title/Summary/Keyword: Space Velocity

Search Result 1,845, Processing Time 0.03 seconds

A New Velocity Measurement Method using Linear Type Hall-effect Sensor for Electro-mechanical Fin Actuator (선형홀센서를 이용한 전기식 구동장치의 속도 신호 구현)

  • Gu, Jeong-Hoi;Song, Chi-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.70-75
    • /
    • 2010
  • The objective of this paper is to propose a new velocity measurement method for an electro-mechanical fin actuator. The model of the electro-mechanical fin actuator includes uncertainties such as unknown disturbances and parameter variations in flight condition. So, an electro-mechanical fin actuator system needs robust control algorithm which requires not only position information but also velocity information. Usually, analog tachometers have been used for velocity feedback in an electro-mechanical fin actuator. However, using these types of sensors have problems such as the cost, space, and malfunction. These problems lead to propose a new velocity measurement method using linear type Hall-effect sensor. In order to verify the proposed method, several experiments are performed using Model Following Sliding Mode Controller(MFSMC). It is shown that the MFSMC with a new velocity measurement method using linear type Hall-effect sensor can satisfy the requirements without using of velocity sensor.

Realization of Velocity of BLDC Motor Using Linear Type Hall-effect Sensor and Enhanced Differentiator (선형홀센서와 고성능 미분기를 이용한 BLDC모터의 속도신호 구현)

  • Gu, Jeong-Hoi;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.840-845
    • /
    • 2018
  • BLDC motor is widely used as a servo motor due to high efficiency, high power density, low inertia, and low maintenance. However, BLDC motor generally needs position and velocity sensors to control actuation system. Usually, analog tachometers and encoders have been used for velocity feedback sensors. However, using these types of sensors have problems such as the cost, space, and malfunction. So, This paper is to propose a new velocity measurement method using linear hall-effect and enhanced differentiator for BLDC motor. In order to verify the feasibility of the proposed method, several simulations and experiments are performed. It is shown that the proposed velocity measurement method can satisfy the requirements without using of velocity sensor.

Study of Cure Properties in Photopolymer for Stereolithography using Various Laser Bean Size (레이저빔 직경변화에 대한 광경화성 수지의 경화특성 고찰)

  • 이은덕;김준안;백인환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1089-1092
    • /
    • 2001
  • In the stereolithography process, build parameters are laser power, scan velocity, scan width, bean diameter, layer thickness and so on. These values are determined according to product accuracy and build time. Build time can be reduced by improving of scan velocity, laser power, layer thickness, hatching space and so on. But variation of these parameters influence part accuracy, surface roughness, strength. This paper observed cure properties in various beam diameter. In order to examine these, relationships of scan velocity and cure depth, scan velocity and cure width according to various beam diameter in one scan line are measured. And cure thickness is measured according to beam diameter and scan velocity in scan surface of one layer. For reduction of build time, beam diameter and scan velocity is proposed in stereolithography process.

  • PDF

A Study on the Combustion Characteristics of MCFC Offgas Catalytic Combustors (MCFC 배가스용 촉매연소기 연소특성에 관한 연구)

  • Lee, Sang Min;Lee, Younhwa;Ahn, Kook Young;Park, In-Wook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.132.1-132.1
    • /
    • 2010
  • Anode off-gas of high temperature fuel cells such as MCFC still contain combustible components such as hydrogen, carbon monoxide and hydrocarbon. Thus, it's very important to fully burn anode off-gas and use the generated heat in order to increase system efficiency. In the present study, catalytic combustors have been applied to high temperature MCFC system so that the combustion of anode-off gas can be boosted up. Since the performance of catalytic combustor directly depends on the combustion catalyst, this study has been focused on the experimental investigation on the combustion characteristics of multiple commercial catalysts having different structures and compositions. In order to determine the design conditions of the catalytic combustor, parameters such as inlet temperature, space velocity and excess air ratio have been varied and optimized for combustor design. Results show that $H_2$ in off-gas assists $CH_4$ combustion in a way that it decreases minimum inlet temperature limit and increases maximum space velocity while keeping high fuel conversion efficiency.

  • PDF

Numerical Design of Light-off Auto-Catalyst for Reducing Cold-Start Emissions (냉간시동시 자동차용 저온활성촉매의 성능 향상을 위한 수치적 설계)

  • Jeong, Soo-Jin;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.9
    • /
    • pp.1264-1276
    • /
    • 2000
  • Light-off catalyst has been used for minimization of cold-start emissions. Improved cold-start performance of light-off catalyst needs the optimal design in terms of flow distribution, geometric surface area, precious metal loading, cell density and space velocity. In this study, these influential factors are numerically investigated using integrated numerical technique by considering not only 3-D fluid flow but also heat and mass transfer with chemical reactions. The present results indicate that uneven catalyst loading of depositing high active catalyst at upstream of monolith is beneficial during warm-up period but its effect is severely deteriorated when the space velocity is above 100,000 $hr^{-1}$ To maximize light-off performance, this study suggests that 1) a light-off catalyst be designed double substrate type; 2) the substrate with high GSA and high PM loading at face be placed at the front monolith; and 3) the cell density of the rear monolith be lower to reduce the pressure drop.

Experimental studies on the diesel engine urea-SCR system using a double NOx sensor system

  • Tang, Wei;Cai, Yixi;Wang, Jun
    • Environmental Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.397-402
    • /
    • 2015
  • SCR has been popularly approved as one of the most effective means for NOx emission control in heavy-duty and medium-duty vehicles currently. However, high urea dosing would lead to ammonia slip. And $NH_3$ sensor for vehicle emission applications has not been popularly used in real applications. This paper presents experimental studies on the diesel engine urea-SCR system by using a double NOx sensor system that is arranged in the downstream of the SCR catalyst based on ammonia cross-sensitivity. It was shown that the NOx conversion efficiency rised as $NH_3/NOx$ increases and the ammonia slip started from the $NH_3/NOx$ equal to 1.4. The increase of temperature caused high improvement of the SCR reaction rate while the space velocity had no obvious change. The ammonia slip was in advance as catalyst temperature or space velocity increase and the ammonia storage reduced as catalyst temperature or space velocity increase. The NOx real-time conversion efficiency rised as the ammonia accumulative storage increase and reached the maximum value gradually.

A Numerical Study of Smoke Movement In Atrium Space (아트리움 공간에 있어서 연기 유동에 관한 수치해석적 연구)

  • 노재성;유홍선;정연태;김충익;윤명오
    • Fire Science and Engineering
    • /
    • v.11 no.4
    • /
    • pp.3-14
    • /
    • 1997
  • The smoke filling process for the atrium space containing a fire source is simulated using two types of deterministic fire model : Zone model and Field model. The zone model used is the CFAST(version 1.6) model developed at the Building and Fire Research Laboratories, NIST in the USA. The field model is a self-developed frie field model based on Computational Fluid Dynamic (CFD) theories. This article is focused on finding out the smoke movement and temperature distribution in atrium space which is cubic in shape. For solving the liked set of velocity and pressure equation, the PISO algorithm, which strengthened the velocity-pressure coupling, was used. Since PISO algorithm is a time-marching procedure, computing time si very fast. A computational procedure for predicting velocity and temperature distribution in fire-induced flow is based on the solution, in finite volume method and non-staggered grid system, of 3-dimensional equations for the conservation of mass, momentum, energy, species and so forth. The fire model i.e Zone model and Field model predicted similar results for clear heights and the smoke layer temperature.

  • PDF

The Magnus Efface of a Rotating Circular Cylinder Near a Plane Wall (벽면 근처에서 회전하는 원주의 마그너스 효과)

  • Ro, Ki-Deok;Kim, Kwang-Seok;Oh, Se-Kyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.11
    • /
    • pp.957-962
    • /
    • 2007
  • The flow around a rotating circular cylinder near a plane wall is investigated by the measurement of the lift acting on the cylinder and by the flow visualization using the hydrogen bubble technique in the circulating water tank. The experimental parameters are the rotating direction of the cylinder, the space ratios H/D($H/D=0.05{\sim}0.5$) between cylinder and plane wall and the velocity ratios ${\alpha}({\alpha}=0{\sim}{\pm}2.0)$. In the case of clockwise, the lift on the rotating circular cylinder was increased with the reduction of the space ratios and with the velocity ratios, the upper separation point was more shifted in the rotating direction with them. In the case of anticlockwise, the absolute value of the lift on the rotating circular cylinder was increased with the space ratios and with the velocity ratios, the lower separation point was more shifted in the rotating direction with them.

TRAO KSP TIMES: Homogeneous, High-sensitivity, Multi-transition Spectral Maps toward the Orion A and Ophiuchus Cloud with a High-velocity Resolution.

  • Yun, Hyeong-Sik;Lee, Jeong-Eun;Choi, Yunhee;Evans, Neal J. II;Offner, Stella S.R.;Heyer, Mark H.;Lee, Yong-Hee;Baek, Giseon;Choi, Minho;Kang, Hyunwoo;Cho, Jungyeon;Lee, Seokho;Tatematsu, Ken'ichi;Gaches, Brandt A.L.;Yang, Yao-Lun;Chen, How-Huan;Lee, Youngung;Jung, Jae Hoon;Lee, Changhoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.68.1-68.1
    • /
    • 2019
  • Turbulence plays a crucial role in controlling star formation as it produces density fluctuation as well as non-thermal pressure against gravity. Therefore, turbulence controls the mode and tempo of star formation. However, despite a plenty of previous studies, the properties of turbulence remain poorly understood. As part of the Taeduk Radio Astronomy Observatory (TRAO) Key Science Program (KSP), "mapping Turbulent properties In star-forming MolEcular clouds down to the Sonic scale (TIMES; PI: Jeong-Eun Lee)", we mapped the Orion A and the Ophiuchus clouds, in three sets of lines (13CO 1-0/C18O 1-0, HCN 1-0/HCO+ 1-0, and CS 2-1/N2H+ 1-0) with a high-velocity resolution (~0.1 km/s) using the TRAO 14-m telescope. The mean Trms for the observed maps are less than 0.25 K, and all these maps show uniform Trms values throughout the observed area. These homogeneous and high signal-to-noise ratio data provide the best chance to probe the nature of turbulence in two different star-forming clouds, the Orion A and Ophiuchus clouds. We present comparisons between the line intensities of different molecular tracers as well as the results of a Principal Component Analysis (PCA).

  • PDF

High-Velocity Impact Damage Behavior of Carbon/Epoxy Composite Laminates

  • Kim, Young A.;Woo, Kyeongsik;Cho, Hyunjun;Kim, In-Gul;Kim, Jong-Heon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.190-205
    • /
    • 2015
  • In this paper, the impact damage behavior of USN-150B carbon/epoxy composite laminates subjected to high velocity impact was studied experimentally and numerically. Square composite laminates stacked with $[45/0/-45/90]_{ns}$ quasi-symmetric and $[0/90]_{ns}$ cross-ply stacking sequences and a conical shape projectile with steel core, copper skin and lead filler were considered. First high-velocity impact tests were conducted under various test conditions. Three tests were repeated under the same impact condition. Projectile velocity before and after penetration were measured by infrared ray sensors and magnetic sensors. High-speed camera shots and C-Scan images were also taken to measure the projectile velocities and to obtain the information on the damage shapes of the projectile and the laminate specimens. Next, the numerical simulation was performed using explicit finite element code LS-DYNA. Both the projectile and the composite laminate were modeled using three-dimensional solid elements. Residual velocity history of the impact projectile and the failure shape and extents of the laminates were predicted and systematically examined. The results of this study can provide the understanding on the penetration process of laminated composites during ballistic impact, as well as the damage amount and modes. These were thought to be utilized to predict the decrease of mechanical properties and also to help mitigate impact damage of composite structures.