• Title/Summary/Keyword: Space Utilization

Search Result 1,053, Processing Time 0.023 seconds

Importance-Satisfaction Analysis of Users of Gochang Jayeonmadang Project (고창 자연마당 조성사업 이용자의 중요도·만족도 분석)

  • Jin Pyo Hong;Yun Jin Shim;Jung Won Sung;Kyeong Cheol Lee;Hyeong keun Kweon;Hui Jae Yun
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.25 no.1
    • /
    • pp.5-13
    • /
    • 2023
  • This study was conducted to identify items that should be considered in order to increase user satisfaction in the Jayeonmadang project by analyzing the importance and satisfaction targeting Gochang Jayeonmadang users. As a result of analysis on the importance and satisfaction of Gochang Jayeonmadang users focusing on 20 items in 6 fields, Overall, it was analyzed that they were not satisfied as they were important. In order to increase user satisfaction of Gochang Jayeonmadang, maintenance such as 'cleanliness and hygiene', 'water quality', 'vegetation growth', and 'facility management' should be carefully reflected from the planning and design stage, and careful attention should be paid even after the project. In addition, emphasis should be placed on enhancing the user convenience, such as 'accessibility', 'space layout and utilization efficiency', and 'convenience of route'. And, when promoting the Jayeonmadang project, the purpose of the project should be actively promoted to local residents to raise the residents' awareness of the importance of biodiversity in the city.

Distribution of Agalmatolite Mines in South Korea and Their Utilization (한국의 납석 광산 분포 현황 및 활용 방안)

  • Seong-Seung Kang;Taeyoo Na;Jeongdu Noh
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.543-553
    • /
    • 2023
  • The current status of domestic a agalmatolite mines in South Korea was investigated with a view to establishing a stable supply of agalmatolite and managing its demand. Most mined agalmatolite deposits were formed through hydrothermal alteration of Mesozoic volcanic rocks. The physical characteristics of pyrophyllite, the main constituent mineral of agalmatolite, are as follows: specific gravity 2.65~2.90, hardness 1~2, density 1.60~1.80 g/cm3, refractoriness ≥29, and color white, gray, grayish white, grayish green, yellow, or yellowish green. Among the chemical components of domestic agalmatolite, SiO2 and Al2O3 contents are respectively 58.2~67.2 and 23.1~28.8 wt.% for pyrophyllite, 49.2~72.6 and 16.5~31.0 wt.% for pyrophyllite + dickite, 45.1 and 23.3 wt.% for pyrophyllite + illite, 43.1~82.3 and 11.4~35.8 wt.% for illite, and 37.6~69.0 and 19.6~35.3 wt.% for dickite. Domestic agalmatolite mines are concentrated mainly in the southwest and southeast of the Korean Peninsula, with some occurring in the northeast. Twenty-one mines currently produce agalmatolite in South Korea, with reserves in the order of Jeonnam (45.6%) > Chungbuk (30.8%) > Gyeongnam (13.0%) > Gangwon (4.8%), and Gyeongbuk (4.8%). The top 10 agalmatolite-producing mines are in the order of the Central Resources Mine (37.9%) > Wando Mine (25.6%) > Naju Ceramic Mine (13.4%) > Cheongseok-Sajiwon Mine (5.4%) > Gyeongju Mine (5.0%) > Baekam Mine (5.0%) > Minkyung-Nohwado Mine (3.3%) > Bugok Mine (2.3%) > Jinhae Pylphin Mine (2.2%) > Bohae Mine. Agalmatolite has low thermal conductivity, thermal expansion, thermal deformation, and expansion coefficients, low bulk density, high heat and corrosion resistance, and high sterilization and insecticidal efficiency. Accordingly, it is used in fields such as refractory, ceramic, cement additive, sterilization, and insecticide manufacturing and in filling materials. Its scope of use is expanding to high-tech industries, such as water treatment ceramic membranes, diesel exhaust gas-reduction ceramic filters, glass fibers, and LCD panels.

Effects of the Double Cropping System on Wheat Quality and Soil Properties (밀-하작물 작부체계가 밀 품질 및 토양에 미치는 영향)

  • Jisu Choi;Seong Hwan Oh;Seo Young Oh;Tae Hee Kim;Sung Hoon Kim;Hyeonjin Park;Jin-Kyung Cha
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.335-342
    • /
    • 2023
  • To achieve self-sufficiency in domestic wheat (Triticum aestivum L.), an increase in high-quality wheat production is essential. Given Korea's limited land area, the utilization of cropping systems is imperative. Wheat is compatible with a double cropping system along with rice, soybeans, and corn. Data on alterations in wheat quality following summer crop cultivation is required. This study investigated the impact of cultivating preceding crops such as rice, soybeans, and corn in a wheat cropping system. The analysis focused on the influence of these preceding crops on wheat growth, quality, and soil characteristics, elucidating their interrelationships and impacts. While there were no differences in growth timing and quantity during wheat growth, a significant variance was observed in stem length. Protein content, a key quality attribute of wheat, displayed variations based on the intercropped crops, with the highest increase observed in wheat cultivated after soybeans. Soil moisture content also exhibited variations depending on the intercropping system. The wheat-rice intercropping system, which requires soil moisture retention, resulted in greater pore space saturation in comparison to other systems. Moreover, soil chemical properties, specifically phosphorus and calcium levels, were influenced by intercropping. The highest reduction in soil phosphorus content occurred with soybean cultivation. These findings suggest that intercropping wheat with soybeans can potentially enhance wheat quality in domestic varieties.