• Title/Summary/Keyword: Space Thermal Condition

Search Result 190, Processing Time 0.032 seconds

Thermo-Mechanical Characteristics of a Plate Structure under Mechanical and Thermal Loading (외력과 열하중을 동시에 받는 판구조의 열-기계적 특성)

  • 김종환;이기범;황철규
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.11
    • /
    • pp.26-34
    • /
    • 2006
  • The thermo-mechanical analysis and test were performed for plate structure under mechanical and thermal loading conditions. Infrared heating system and hydraulic loading system were used to simulate mechanical and thermal environment for the plate structure which is similar to the fin of the airframe. Also, FEM analysis using plastic option was added to evaluate thermo-mechanical behavior. Thermo-mechanical tests were conducted at elevated temperature and rapid heating(10℃/sec) condition with external loading together. To investigate the effect of heating environment, the strength at room temperature was compared with that of elevated temperature and rapid heating condition. A methodology for test and analysis for supersonic vehicle subjected to aerodynamic loading and heating was generated through the study. These experimental and analysis results can be used for designing thermal resistance structures of the supersonic vehicle.

Basic Study on Creating Ecological Residence Space - A thermal environment study of the aged - (생태 공간 조성에 관한 기초 연구 -고령자를 대상으로 한 열환경 연구-)

  • Kim, Dong-Gyu;Ha, Byeong-Yong;Kum, Jong-Soo;Chung, Yong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.23 no.2
    • /
    • pp.153-161
    • /
    • 2011
  • Creating standards on thermal environment has been organized traditionally based on the youth and the manhood who are in mainly active layer of a society. However, traditional creating standards have differences from the physiology of the aged who have weak physical ability than younger person. As a result, it causes a health problem of the aged. Therefore, In this study, we had a basic study to create a comfortable thermal environment which had considered to a physical ability and a physiology of the aged, and build a ecological residence space to maintain health. We had several experiments with the aged; Experiment, Comfort Sensation Vote, Mean Skin Temperature and Analyzing HRV. The result have following by: 1)For the aged, the summer recommend temperature, $26^{\circ}C$, is appropriate within first 30 ~ 40 minutes, but it should be increasing the temperature after that time. 2) By considering PMV status and thermal feeling of the aged, they are prefer to higher temperature than normal setting of air-condition system. 3) In the condition of the summer recommend temperature, $26^{\circ}C$, they had answered in neutral or comfort with the comfort sensation vote. However, we had figure out that they had stress in a lower temperature by analyzing the result of HRV.

Free Vibration Characteristics of Rectangular Plates under Uniform Thermal Loading Part II. Experimental Modal Test (균일 열부가 하중을 받는 사각판의 자유 진동특성 연구 Part II. 고유진동 실험)

  • Jeon, Byoung-Hee;Kang, Hui-Won;Lee, Young-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.106-113
    • /
    • 2011
  • This paper was conducted on experimental analysis in the free vibration analysis of rectangular plates under uniform thermal loading. Materials of three rectangular plates were aluminum, steel and stainless-steel respectively. The dimension of rectangular plates was 0.1 $\times$ 0.1 $\times$ 0.002 m. Infrared quartz lamps were used for thermal loading. The PCS(Power Control System) electric control system was applied for control and scanning vibrometer (Poly Tech) was used for acquisition of frequency response function. Applied temperature was increased from room temperature to $300^{\circ}C$ by $50^{\circ}C$. Boundary condition was free-free condition using bungee cord. Front face of rectangular plate was heated uniformly.

The Development of Thermal Model for Safety Analysis on Electronics in High-Speed Vehicle (고속 비행체 전자 장비의 안전성 예측을 위한 열해석 모델 구축)

  • Lee, Jin Gwan;Lee, Min Jung;Hwang, Su Kweon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.5
    • /
    • pp.437-446
    • /
    • 2021
  • As flying vehicle's speed is getting faster, the magnitude of aerodynamic heating is getting bigger. High-speed vehicle's exterior skin is heated to hundreds of degrees, and electrical equipments inside the vehicle are heated, simultaneously. Since allowable temperature of electrical equipments is low, they are vulnerable to effect of aerodynamic heating. These days, lots of techniques are applied to estimate temperature of electrical equipments in flight condition, and to make them thermally safe from heating during flight. In this paper, new model building technique for thermal safety analysis is introduced. To understand internal thermal transient characteristic of electrical equipment, simple heating experiment was held. From the result of experiment, we used our new building technique to build thermal analysis model which reflects thermal transient characteristic of original equipment. This model can provide internal temperature differences of electrical equipment and temperature change of specific unit which is thermally most vulnerable part in the equipment. So, engineers are provided much more detailed thermal analysis data for thermal safety of electrical equipment through this technique.

Environment Effects on the Stability of the CQUEAN CCD

  • Choi, Nahyun;Pak, Soojong;Choi, Changsu;Park, Won-Kee;Im, Myungshin;Jeon, Yiseul;Baek, Giseon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.222.2-222.2
    • /
    • 2012
  • Camera for QUasars in EArly uNiverse (CQUEAN) is an optical CCD camera attached to the 2.1m Otto Struve telescope at the McDonald Observatory, USA. CCD output signal contains the electrons generated by photoionization of incident light and thermal ionization. Therefore reliable photometric result can be obtained only under the stable condition of CCD thermal properties. We investigated the temperature dependency of the various characteristics of CQUEAN CCD chip, including bias level, dark level, gain, and quantum efficiency (QE), with the CQUEAN observation and calibration data obtained during 2012 May run. We discuss the environmental effects, i.e., ambient temperature, as well as CCD temperature on the stability of its characteristics.

  • PDF

Development of the Traction Motor for High Speed Train (한국형 고속전철용 견인전동기 개발)

  • 이상우;윤종학;최종묵;박계서
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.427-433
    • /
    • 2002
  • An inverter-driven induction motor is usually adapted to the traction motor for a high speed drive system requiring safety, reliability, performance, compact size owing to the space and weight alloted for attaching to train, etc. and AC Traction motor for G7 train will be operated in the worst condition such as mechanical vibration, limited mounting space, severe thermal stress, inverter with non-sinusoidal voltage waveform, dust and so on. therefore, design procedure must be carefully carried out wi th considering the motor size, vibration and thermal expansion of rotor bars, insulation system, reliability of frame, as well as output characteristics. In this paper, we will inform the characteristics and design of the traction motor for G7 train and also analyze the test result of it.

  • PDF

Modelling and Preliminary Prediction of Thermal Balance Test for COMS (통신해양기상위성의 열평형 시험 모델 및 예비 예측)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon;Han, Cho-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.3
    • /
    • pp.403-416
    • /
    • 2009
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and developed by KARl for communication, ocean and meteorological observations. It will be tested under vacuum and very low temperature conditions in order to verify thermal design of COMS. The test will be performed by using KARI large thermal vacuum chamber, which was developed by KARI, and the COMS will be the first flight satellite tested in this chamber. The purposes of thermal balance test are to correlate analytical model used for design evaluation and predicting temperatures, and to verify and adjust thermal control concept. KARI has plan to use heating plates to simulate space hot condition especially for radiator panels of satellite such as north and south panels. They will be controlled from 90 K to 273 K by circulating GN2 and LN2 alternatively according to the test phases, while the main shroud of the vacuum chamber will be under constant temperature, 90 K, during all thermal balance test. This paper presents thermal modelling including test chamber, heating plates and the satellite without solar array wing and Ka-band reflectors and discusses temperature prediction during thermal balance test.

Space Business and Applications of Vacuum Technology (우주개발과 진공기술의 응용)

  • Lee, Sang-Hoon;Seo, Hee-Jun;Yoo, Seong-Yeon
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.4
    • /
    • pp.270-277
    • /
    • 2008
  • Vacuum is any air or gas pressure less than a prevailing pressure in an environmental or, specifically, any pressure lower than the atmospheric pressure and is used by a wide variety of scientists and engineering - including clean environment, thermal insulation, very long mean free path, plasma, space simulation[1]. The space environment is characterized by such a severe condition as high vacuum, and very low and high temperature. Since a satellite will be exposed to such a space environment as soon as it goes into its orbit, space environmental test should be carried out to verify the performance of the satellite on the ground under the space environmental conditions. A general and widely used method to simulate the space environment is using a thermal vacuum chamber which consists of vacuum vessel and thermally controlled shroud. As indicated by name of vacuum chamber, the vacuum technology is applied to design and manufacture of the thermal vacuum chamber. This paper describe the vacuum technology which is applied to space business.

Finite Element Analysis of Heat and Moisture Transfer in Porous Materials (다공성 물질의 열 및 습도 전달에 관한 유한요소 해석)

  • Lee, Ho-Rim;Geum, Yeong-Tak;Song, Chang-Seop;O, Geun-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.158-167
    • /
    • 1999
  • Heat and moisture transfer associated with porous materials are investigated. The heat and moisture transfer in porous materials caused by the interaction of moisture gradient, temperature gradient, conduction, and evaporation are considered. The variations of temperature and moisture not only change the volume but also induce the hygro-thermal stress. The finite element formulation for solving the temperature and moisture transfer as well as the associated hygro-thermal stresses is developed. In order to verify the finite element formulation, the heat and moisture moving boundary problem in a half space and the hygro-thermo-mechanical problem in an infinite plate with a circular hole are analyzed. Temperature profile, moisture profile, and hygro-thermal stresses are compared with those of analytic solution and other investigator. Good agreements are examined

  • PDF

Thermal and Dynamic Analyses of a Composite Optical Bench (복합재료 광학탑재 위성구조체의 열변형 및 동적특성)

  • Ahn, Jin-Hee;Kim, Cheol
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.161-164
    • /
    • 2005
  • This paper finds the optimal staking sequence of the satellite composite structures to minimize severe thermal deformations during their orbital operation using GAs and finite element analyses. Then, the optimal design is reinforced to endure the launch loads like high inertia and vibratory loads that are, usually, smaller than orbital loads induced by space environments. The thermal deformation of sandwich panels was minimized at the staking sequence of [$0_2$/90]s and that of composite strut was lowest at the angle of [0/${\pm}45$]s Also there was no buckling in the compressive loading. By vibration analysis, the natural frequencies of the composite components are much higher than aluminum structures and the expected stiffness condition is satisfied. Then, a composite optical bench was fabricated for tests and all analyses results were verified by structural testing. There were good correlations between two results.

  • PDF