• Title/Summary/Keyword: Space Propulsion

Search Result 604, Processing Time 0.024 seconds

Theoretical Performance Prediction Program of Pulse Detonation Engines (펄스 데토네이션 엔진 이론 성능 예측 프로그램)

  • Kim, Tae-Young;Kim, Ji-Hoon;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.552-560
    • /
    • 2014
  • Pulse Detonation Engine(PDE) has been investigated as a next generation propulsion system with the advantages of the higher thermal efficiency by the compression effect and the wide operation ranges from zero speed at ground. In the present study, an efficient theoretical PDE performance prediction program was developed for realistic propellants based on the Endo's theory combining the Chapman-Jouguet detonation theory and expansion process of burnt gas in a constant area tube. The program was validated through the comparison with the experimental data obtained by a ballistic pendulum measurement. PDE performance analyses were carried out for various hydrocarbon fuels and oxidizer compositions by changing the mixture equivalence ratio and initial conditions. Theoretical PDE performance database could be established as a result of the analyses.

Next Generation Rotorcraft Technologies in USA and Europe (미국과 유럽의 차세대 회전익 기술 개발 현황)

  • Oh, Sejong;Kim, Sung Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.8
    • /
    • pp.713-721
    • /
    • 2014
  • In Europe and USA, new programs called GRC(Green Rotorcraft) and SRW (Subsonic Rotary Wing program) respectively, have been currently underway for developing the next generation rotorcraft. The final goal is to develope fuel-efficient/environmental-friendly tilt-rotor civilian rotorcraft, which can partly replace short-range regional aircrafts. Also for safe operation, the new rotorcraft technology is cooperated with the new air transport management(ATM) system, called SESAR(Single European Sky ATM Research) and NextGen(Next Generation Air Transport System) in Europe and USA. In addition to achieve the final goal, the tilt-rotor aircraft, they are trying to improve the performance of conventional helicopters by adopting more efficient propulsion system, active rotor system, and reducing internal and external noise. Especially in GRC program of Europe, the environmental factors such as noise, fuel efficiency, reduction of emission gas(CO2, NOx), are focused for the new technologies.

Verification on the Configuration Change of Thruster Heat Shield for Satellite Attitude Control through Stress Analysis (구조해석을 이용한 인공위성 자세제어용 추력기 열차폐막의 형상 변경에 대한 타당성 검증)

  • Lee, Kyun-Ho;Kim, Jin-Hee;Han, Cho-Young;Choi, Joon-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.126-133
    • /
    • 2004
  • MRE-1 Dual Thruster Module(DTM), which will be used in KOMPSAT(Korea Multi-Purpose Satellite), can provide reliable and cost-effective means for attitude and maneuvering control system. Thruster heat shield, one of the main components of DTM, is designed to prevent the critical radiative heat exchange between thruster and satellite during firing. To overcome the manufacturing difficulties, a electroforming process is preferred to classical welding process. In this case, an inner diameter of a new shield will be decreased a little due to the change of manufacturing process. Therefore, the interference problem between thruster nozzle and heat shield is investigated through structural analysis and their results are described in this paper.

Low Thrust, Fuel Optimal Earth Escape Trajectories Design (저추력기를 이용한 연료 최적의 지구탈출 궤적 설계 연구)

  • Lee, Dong-Hun;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.647-654
    • /
    • 2007
  • A Discrete continuation Method/homotopy approaches are studied for energy/fuel optimal low thrust Earth escape trajectory by solving a two point boundary value problem(TPBVP). Recently, maneuvers using low thrust propulsion system have been identified as emerging technologies. The low thruster is considered as the main actuator for orbit maneuvers. The cost function consists of a energy/fuel consumption function, and constraints are position and velocity vectors at the terminal escape point. Solving the minimum energy/fuel problem directly is not an easy task, so we adopt the homotopy analysis. Using a solution of the minimum energy, which is solved by discrete continuation method, we obtain the solution of the minimum fuel problem.

Conceptual Design and Development Test of an Unmanned Scaled-down Quad Tilt Prop PAV (쿼드 틸트 프롭형 PAV 무인 축소모델 개념설계 및 개발시험)

  • Byun, Young-Seop;Song, Jun-Beom;Kim, Jae-Nam;Jeong, Jin-Suk;Song, Woo-Jin;Kang, Beom-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.37-46
    • /
    • 2014
  • This paper describes the conceptual design and development test procedure of a unmanned scaled-down personal air vehicle(PAV) with drive and flight dual mode capability. Trade studies on operational requirements led to the suggestion of a quad tilt prop platform which has nacelle tilt capability with multi rotor configuration. Motors for propeller propulsion and driving mechanism were integrated into a single nacelle, then they were implemented by nacelle tilt mechanism for conversion between the drive and the flight modes. Primary design parameters and initial specifications were confirmed through conceptual design, then functional tests were performed with the test platforms for the drive and the flight modes.

Initial Sizing of a Glider Type High Altitude Long Endurance Unmanned Aerial Vehicle Using Alternative Energy (대체에너지를 사용한 글라이더형 고고도 장기체공 무인항공기의 초기사이징)

  • Han, Hye-Sun;Kim, Chan-Eol;Hwang, Ho-Yon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.47-58
    • /
    • 2014
  • In this research, the initial sizing of a HALE(High Altitude Long Endurance) UAV which uses solar power and hydrogen fuel cell as an alternative energy was performed. Instead of a wing box type, a glider type was chosen since it is relatively easy to get a data thanks to many researches abroad. Maximum takeoff weight is around 150Kg and the propulsion system is composed of motor, propeller, solar cell, and hydrogen fuel cell which can be recharged through electrolysis. Maximum takeoff weight was estimated as aspect ratio, wing span, wing area change while considering energy balance of required energy which is necessary for flight during the entire day and available energy which can be taken from the solar cell.

Experimental analysis for the effect of integrated pipe-roof in trenchless method (비개착 일체형 파이프루프 지보효과의 실험적 분석)

  • Sim, Youngjong;Jin, Kyu-Nam
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.377-387
    • /
    • 2016
  • In recent, in case that the underpass is constructed by trenchless method, its stability increases by reinforcing steel pipe with re-bar and mortar after propulsion into the ground to form pipe-roof. Therefore, it can be predicted that the integrated pipe-roof decreases the stress acting on the underpass by sharing load. In this study, to analyze the effect of integrated pipe-roof and behavior of stress around underpass, experimental tests for the rectangular and arch cross section of the underpass are performed using soil chamber. As a result, stress and strain acting on the underpass decrease due to sharing load by integrated pipe-roof. This phenomenon is more pronounced by increasing the stiffness of pipe-roof. Furthermore it can be expected that cross-section of underpass can be economically designed.

Design, Analysis and Experiment of Potato Gun with a Spherical Projectile (구형 탄환을 이용한 감자총의 설계, 해석 및 시험)

  • Kang, Hong-Jae;Kim, Ji-Hwan;Kim, Young-Sik;Son, So-Eun;Choi, Han-Ul;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.10
    • /
    • pp.796-804
    • /
    • 2013
  • The "Potato Gun," a simple heat engine, is fabricated, tested and analyzed as a part of engineering education program of combustion and propulsion classes. Combustor pressure is predicted by the chemical equilibrium analysis of a constant volume combustor. Then, the internal ballistics, the conversion of thermal energy into the mechanical energy of a projectile, is predicted though the expansion process. The trajectory of a projectile is estimated by considering the aerodynamic effect around the spherical projectile. The energy conversion efficiency and the equivalence ratio of the fuel-air mixture could be estimated by the comparison of the experimental results and the theoretical prediction. The present work would be an example of attracting the interest of students for the application of the engineering principles at undergraduate level by recycling the waste materials.

Computational Investigation of the Effect of UAV Engine Nozzle Configuration on Infrared Signature (무인항공기 노즐 형상 변화에 따른 IR 신호 영향성 연구)

  • Kang, Dong-Woo;Kim, June-Young;Myong, Rho-Shin;Kim, Won-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.10
    • /
    • pp.779-787
    • /
    • 2013
  • The effects of various nozzle configurations on infrared signature are investigated for the purpose of analysing the infrared signature level of aircraft propulsion system. A virtual subsonic aircraft is selected and then a circular convergent nozzle, which meets the mission requirements, is designed. Convergent nozzles of different configurations are designed with different geometric profiles. Using a compressible Navier-Stokes-Fourier CFD code, an analysis of thermal flow field and nozzle surface temperature distribution is conducted. From the information of plume flow field and nozzle surface temperature distribution, IR signature of plume and nozzle surface is calculated through the narrow-band model and the RadThermIR code. Finally, qualitative information for IR signature reduction is obtained through the analysis of the effects of various nozzle configurations on IR signature.

Reliability Prediction of Electronic Arm Fire Device Applying Sensitivity Analysis (민감도 해석을 적용한 전자식 점화안전장치의 신뢰도 추정)

  • Kim, Dong-seong;Jang, Seung-gyo;Lee, Hyo-Nam;Son, Young Kap
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.5
    • /
    • pp.393-401
    • /
    • 2018
  • Reliability prediction of an electronic arm fire device(EAFD) was studied which is applied to prevent accidental ignition in a solid rocket motor. For predicting the reliability, the main components of the EAFD were first defined(Control unit, LEEFI, TBI) and the operating principle of each component was analyzed. Performance modeling of each part is established using selected input variables through system analysis. When complex analysis is required, we approximated it with polynomial equation using response surface method. Monte-Carlo simulation is applied to performance modeling to estimate the design reliability.