• Title/Summary/Keyword: Space Power

Search Result 3,262, Processing Time 0.036 seconds

Power-Space Functions in High Speed Railway Wireless Communications

  • Dong, Yunquan;Zhang, Chenshuang;Fan, Pingyi;Fan, Pingzhi
    • Journal of Communications and Networks
    • /
    • v.17 no.3
    • /
    • pp.231-240
    • /
    • 2015
  • To facilitate the base station planning in high speed railway communication systems, it is necessary to consider the functional relationships between the base station transmit power and space parameters such as train velocity and cell radius. Since these functions are able to present some inherent system properties determined by its spatial topology, they will be referred to as the power-space functions in this paper. In light of the fact that the line-of-sight path persists the most power of the received signal of each passing train, this paper considers the average transmission rate and bounds on power-space functions based on the additive white Gaussian noise channel (AWGN) model. As shown by Monte Carlo simulations, using AWGN channel instead of Rician channel introduces very small approximation errors, but a tractable mathematical framework and insightful results. Particularly, lower bounds and upper bounds on the average transmission rate, as well as transmit power as functions of train velocity and cell radius are presented in this paper. It is also proved that to maintain a fixed amount of service or a fixed average transmission rate, the transmit power of a base station needs to be increased exponentially, if the train velocity or cell radius is increased, respectively.

Solar and Heliospheric 1.3-year Signals during 1970-2007

  • Hwang, Junga;Cho, Il-Hyun;Park, Yound-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.92.2-92.2
    • /
    • 2013
  • We revisit the 1.3-year (yr) signals observed on the Sun, in the interplanetary space, and in the Earth's magnetosphere to study the coupling among signals from the three regions for about forty years (1970--2007) covering three solar cycles 21, 22, and 23. For this, we make dynamic spectra of datasets including three different regions. From this, we estimate the peak frequency around 1.3 yr for each region and the corresponding band power. We found that coherent power only appears during 1987-1995 and the coherent behavior is found only in the interplanetary space and Earth, not in the Sun. Although the solar surface magnetic field shows significant power around 1.3 yr, their peak frequencies are statistically different from those of the outer regions, which make us to dismiss the existence of coherence among the three regions. But it is notable that the peaks in band power corresponding to the 1.3-yr period are clearly simultaneous in the interplanetary space and Earth.

  • PDF

CONCEPTUAL STRUCTURAL DESIGN AND COMPARATIVE POWER SYSTEM ANALYSIS OF OZONE DYNAMICS INVESTIGATION NANO-SATELLITE (ODIN)

  • Park, Nuri;Hwang, Euidong;Kim, Yeonju;Park, Yeongju;Kang, Deokhun;Kim, Jonghoon;Hong, Ik-seon;Jo, Gyeongbok;Song, Hosub;Min, Kyoung Wook;Yi, Yu
    • Journal of The Korean Astronomical Society
    • /
    • v.54 no.1
    • /
    • pp.9-16
    • /
    • 2021
  • The Ozone Dynamics Investigation Nano-Satellite (ODIN) is a CubeSat design proposed by Chungnam National University as contribution to the CubeSat Competition 2019 sponsored by the Korean Aerospace Research Institute (KARI). The main objectives of ODIN are (1) to observe the polar ozone column density (latitude range of 60° to 80° in both hemispheres) and (2) to investigate the chemical dynamics between stratospheric ozone and ozone depleting substances (ODSs) through spectroscopy of the terrestrial atmosphere. For the operation of ODIN, a highly efficient power system designed for the specific orbit is required. We present the conceptual structural design of ODIN and an analysis of power generation in a sun synchronous orbit (SSO) using two different configurations of 3U solar panels (a deployed model and a non-deployed model). The deployed solar panel model generates 189.7 W through one day which consists of 14 orbit cycles, while the non-deployed solar panel model generates 152.6 W. Both models generate enough power for ODIN and the calculation suggests that the deployed solar panel model can generate slightly more power than the non-deployed solar panel model in a single orbit cycle. We eventually selected the non-deployed solar panel model for our design because of its robustness against vibration during the launch sequence and the capability of stable power generation through a whole day cycle.

Research on the Necessity of Building the Second Space Rocket Launching Sites for Breakthrough Development of R.O.K National Space Power (도약적 국가 우주력 발전을 선도할 제2 우주센터 구축 필요성 연구)

  • Park, Ki-tae
    • Journal of Space Technology and Applications
    • /
    • v.2 no.2
    • /
    • pp.146-168
    • /
    • 2022
  • Witnessing current military conflicts in South China Sea and Eastern Europe, most defense analysts evaluate one of the most serious security threat toward the US is coming from the superpower competitions with Russia and China. The main means for such super power hegemonic competitions is military power and space power is a key enabler to maximize the efficiency and effectiveness of military employment. Reflecting above circumstances, the space hegemonic competition between the Unites States and China is spreading into all aspects of national powers. Under such an environment, R.O.K needs to significantly develop national space power to preserve life and assets of people in space. On the other hand, the R.O.K has a lot of limitations in launching space assets into orbits by land-based space rockets due to its geographic locations. The limitation of rocket launching direction, the failure to secure a significant area enough to secure safety and the limitation to secure open area enough to build associated facilities are among them. On this paper, I will suggest the need to build the 2nd space rocket launching site after analyzing a lot of short-falls the current 'Naro' space center face, compared to those of advanced space powers around the world.

Control and Modulation of Three to Asymmetrical Six-Phase Matrix Converters based on Space Vectors

  • Al-Hitmi, Mohammed A.;Rahman, Khaliqur;Iqbal, Atif;Al-Emadi, Nasser
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.475-486
    • /
    • 2019
  • This paper proposes the modulation and control of a three-to-six-phase matrix converter with an asymmetrical six-phase output. The matrix converter (MC) outputs consist of two sets of three-phase spatially shifted by $30^0$, where the two sets have two isolated neutrals. The space vector approach is considered for the modeling and subsequent modulation of the three-to-six phase MC. The intelligent selection of voltage space vectors is made to synthesize the reference voltages and to obtain a sinusoidal output. The dwell times of selected voltage space vectors are adjusted in such a way that the effect of the second and the third auxiliary plane vectors (i.e., x1-y1, and x2-y2) are nullified. To achieve the maximum output voltage gain and to ensure that no reactive power is drawn from the utility supply, the input side power factor is maintained at unity. Nevertheless, the source side power factor is controllable. The modulation technique is implemented in dSPACE working in conjunction with a FPGA. Hardware results that validate the proposed control algorithm are discussed.

DEVELOPMENT OF THE SPACE CODE FOR NUCLEAR POWER PLANTS

  • Ha, Sang-Jun;Park, Chan-Eok;Kim, Kyung-Doo;Ban, Chang-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.43 no.1
    • /
    • pp.45-62
    • /
    • 2011
  • The Korean nuclear industry is developing a thermal-hydraulic analysis code for safety analysis of pressurized water reactors (PWRs). The new code is called the Safety and Performance Analysis Code for Nuclear Power Plants (SPACE). The SPACE code adopts advanced physical modeling of two-phase flows, mainly two-fluid three-field models which comprise gas, continuous liquid, and droplet fields and has the capability to simulate 3D effects by the use of structured and/or nonstructured meshes. The programming language for the SPACE code is C++ for object-oriented code architecture. The SPACE code will replace outdated vendor supplied codes and will be used for the safety analysis of operating PWRs and the design of advanced reactors. This paper describes the overall features of the SPACE code and shows the code assessment results for several conceptual and separate effect test problems.

A study on DSP based power analyzing and control system by analysis of 3-dimensional space current co-ordinates (3차원 전류좌표계 해석법에 의한 DSP 전력분석 제어장치에 관한 연구)

  • 임영철;정영국;나석환;최찬학;장영학;양승학
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.543-552
    • /
    • 1996
  • The goal of this paper is to developed a DSP based power analyzing and control system by 3-Dimensional (3-D) space current co-ordinates. A developed system is made up of 486-PC and DSP (Digital Signal Processor) board, Active Power Filter, Non-linear thyristor load, and Power analyzing and control program for Windows. Power is analyzed using signal processing techniques based on the correlation between voltage and current waveforms. Since power analysis algorithm is performed by DSP, power analysis is achieved in real-time even under highly dynamic nonlinear loading conditions. Combining control algorithm with power analysis algorithm is performed by DSP, power analysis is achieved in real-time even under highly dynamic nonlinear loading conditions. Combining control algorithm with power analysis algorithm, flexibility of the proposed system which has both power analysis mode and control mode, is greatly enhanced. Non-active power generated while speed of induction motor is controlled by modulating firing angle of thyristor converter, is compensated by Active Power Filter for verifying a developed system. Power analysis results, before/after compensation, are numerically obtained and evaluated. From these results, various graphic screens for time/frequency/3-D current co-ordinate system are displayed on PC. By real-time analysis of power using a developed system, power quality is evaluated, and compared with that of conventional current co-ordinate system. (author). refs., figs. tabs.

  • PDF

Density distributions and Power spectra of outflow-driven turbulence

  • Kim, Jongsoo;Moraghan, Anthony
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.57.2-57.2
    • /
    • 2014
  • Protostellar jets and outflows are signatures of star formation and promising mechanisms for driving supersonic turbulence in molecular clouds. We quantify outflow-driven turbulence through three-dimensional numerical simulations using an isothermal version of the total variation diminishing code. We drive turbulence in real space using a simplified spherical outflow model, analyze the data through density probability distribution functions (PDFs), and investigate density and velocity power spectra. The real-space turbulence-driving method produces a negatively skewed density PDF possessing an enhanced tail on the low-density side. It deviates from the log-normal distributions typically obtained from Fourier-space turbulence driving at low densities, but can provide a good fit at high densities, particularly in terms of mass-weighted rather than volume-weighted density PDF. We find shallow density power-spectra of -1.2. It is attributed to spherical shocks of outflows themselves or shocks formed by the interaction of outflows. The total velocity power-spectrum is found to be -2.0, representative of the shock dominated Burger's turbulence model. Our density weighted velocity power spectrum is measured as -1.6, slightly less that the Kolmogorov scaling values found in previous works.

  • PDF

Improved Control Strategy Based on Space Vectors for Suppressing Grid-Side Current Harmonics in Three-Phase Current Source Rectifiers with a Hybrid Switch

  • Xu, Yan;Lu, Guang-Xiang;Jiang, Li-Jie;Yi, Gui-Ping
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.497-503
    • /
    • 2015
  • This paper analyses the harmonic pollution to power grids caused by several high-power rectifiers, summarizes the requirements for rectifiers in suppressing grid-side current harmonics and optimizes a new-type of current source PWM rectifier with a hybrid switch. The rectifier with a hybrid switch boasts significant current characteristics and cost advantages in the high-power area. To further enhance the working frequency of the current source rectifier with a hybrid switch for suppressing grid-side harmonics and reducing the inductance size, this paper proposes an optimal control strategy based on space vector. It also verifies that the optimal control strategy based on space vector can reduce the total harmonic distortion of the grid-side current of the rectifier with a hybrid switch via circuit simulation and experimental results.

Study on heat transfer characteristics and structural parameter effects of heat pipe with fins based on MOOSE platform

  • Xiaoquan Chen;Peng Du;Rui Tian;Zhuoyao Li;Hongkun Lian;Kun Zhuang;Sipeng Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.364-372
    • /
    • 2023
  • The space reactor is the primary energy supply for future space vehicles and space stations. The radiator is one of the essential parts of a space reactor. Therefore, the research on radiators can improve the heat dissipation power, reduce the quality of radiators, and make the space reactor smaller. Based on MOOSE multi-physics numerical calculation platform, a simulation program for the combination of heat pipe and fin at the end of heat pipe radiator is developed. It is verified that the calculation result of this program is accurate and the calculation speed is fast. Analyze the heat transfer characteristics of the combination with heat pipe and fin, and obtain its internal temperature field. Based on the calculation results, the influence of structural parameters on the heat dissipation power is analyzed. The results show that when the fin width is 0.25 m, fin thickness is 0.002 m, condensing section length is 0.5425 m and heat pipe radius is 0.014 m, the power-mass ratio is the highest. When the temperature is 700K-900K, the heat dissipation power increases 41.12% for every 100K increase in the operating temperature. Smaller fin width and thinner fin thickness can improve the power-mass ratio and reduce the radiator quality.