• Title/Summary/Keyword: Space Optics Alignment

Search Result 33, Processing Time 0.033 seconds

Modeling Alignment Experiment Errors for Improved Computer-Aided Alignment

  • Kim, Yunjong;Yang, Ho-Soon;Song, Jae-Bong;Kim, Sug-Whan;Lee, Yun-Woo
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.525-532
    • /
    • 2013
  • Contrary to the academic interests of other existing studies elsewhere, this study deals with how the alignment algorithms such as sensitivity or Differential Wavefront Sampling (DWS) can be better used under effects from field, compensator positioning and environmental errors unavoidable from the shop-floor alignment work. First, the influences of aforementioned errors to the alignment state estimation was investigated with the algorithms. The environmental error was then found to be the dominant factor influencing the alignment state prediction accuracy. Having understood such relationship between the distorted system wavefront caused by the error sources and the alignment state prediction, we used it for simulated and experimental alignment runs for Infrared Optical System (IROS). The difference between trial alignment runs and experiment was quite close, independent of alignment methods; 6 nm rms for sensitivity method and 13 nm rms for DWS. This demonstrates the practical usefulness and importance of the prior error analysis using the alignment algorithms before the actual alignment runs begin. The error analysis methodology, its application to the actual alignment of IROS and their results are described together with their implications.

Alignment estimation performance of Multiple Design Configuration Optimization for three optical systems

  • Oh, Eun-Song;Kim, Seong-Hui;Kim, Yun-Jong;Lee, Han-Shin;Kim, Sug-Whan
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.31.1-31.1
    • /
    • 2011
  • In this study, we investigated alignment state estimation performances of the three methods i.e. merit function regression (MFR), differential wavefront sampling (DWS) and Multiple Design Configuration Optimization (MDCO). The three target optical systems are 1) a two-mirror Cassegrain system for deep space Earth observation, 2) intermediate size three-mirror anastigmat for Earth ocean monitoring, and 3) extremely large segmented optical system for astronomical observation. We ran alignment state estimation simulation for several alignment perturbation cases including 1mm to 10mm in decenter and from 0.1 to 1 degree in tilt perturbation error for the two-mirror Cassegrain system. In general, we note that MDCO shows more competitive estimation performance than MFR and DWS. The computational concept, case definition and the simulation results are discussed with implications to future works.

  • PDF

FABRICATION AND ALIGNMENT OF PARTS OF THE KASINICS OFFNER SYSTEM (KASINICS 오프닝 광학계의 부품 가공 및 정렬)

  • Mok, Seung-Won;Lee, Sung-Ho;Yuk, In-Soo;Park, Young-Sik;Jin, Ho;Han, Jeong-Yeo;Moon, Bong-Kon;Cha, Sang-Mok;Kim, Geon-Hee;Im, Myung-Shin
    • Publications of The Korean Astronomical Society
    • /
    • v.21 no.2
    • /
    • pp.43-49
    • /
    • 2006
  • The KASINICS (KASI Near Infrared Camera System) is a ground-based Near-Infrared (NIR) imaging instrument developed by the Korea Astronomy and Space Science Institute (KASI). In this paper, we report the test results of the KASINICS camera optics system which is comprised of a 1-1 Offner relay. We measure that the surface RMS fluctuations of the Offner mirrors are at the level of $10^{-1}-10^{-2}$ of the target wavelengths, showing that the mirrors are sufficiently smooth for NIR observations. The alignment of the Offner optics system has been checked too. Our ray-tracing simulations find that the image quality should not degrade more than the pixel size of the KASINICS ($40{\mu}m$), if a de-centering or a tilt of the Offner mirrors are within 5mm, or $2.5^{\circ}$. Our measurement shows that the de-centering or the tilt of the Offner mirrors are less than 1 mm or $0.5^{\circ}$, assuring that the KASINICS image quality are not affected by the alignment errors. We have also measured that the optics resolution is $20{\mu}m$ and it does not degrade more than 10% over the detector surface area of 14.3 mm ${/times}$ 14.3mm. Overall, we conclude that the KASINICS optics system satisfies the design requirements for NIR imaging observations.

Development of an Equipment for measuring the MTF of Camera Phone Lenses (카메라폰 렌즈의 MTF 측정장치 개발)

  • Hong, Sung-Mok;Jo, Jae-Heung;Lee, Yun-Woo;Lee, Hoi-Yon;Yang, Ho-Soon;Lee, In-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.1
    • /
    • pp.31-36
    • /
    • 2007
  • In order to evaluate the performance of phone camera lenses, we have developed equipment for measuring the modulation transfer function(MTF) for small size lenses. The equipment is composed of an an image analyzer, object generator, and a lens mount. The object generator is rotated for on and off-axis measurement. The lens mount is of horizontal type and tiltable for precise alignment to the optical axis. After the initial alignment process, the measurement is done within 10 seconds automatically

Computer-Aided Alignment of an Earth Observation Camera (컴퓨터를 이용한 지구관측 카메라의 광학정렬)

  • Kim, Eugene D.;Choi, Young-Wan;Kang, Myung-Seok;Kim, Ee-Eul;Yang, Ho-Soon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.142-146
    • /
    • 2004
  • Spaceborne earth observation or astronomical payloads often use Cassegrain-type telescopes due to limits in mass and volume. Precision optical alignment of such a telescope is vital to the success of the mission. This paper describes the alignment simulation and experiment of computer-aided alignment method during the assembly of MAC (Medium-sized Aperture Camera) telescope for spaceborne earth observation.

Development of Optical System for ARGO-M

  • Nah, Jakyoung;Jang, Jung-Guen;Jang, Bi-Ho;Han, In-Woo;Han, Jeong-Yeol;Park, Kwijong;Lim, Hyung-Chul;Yu, Sung-Yeol;Park, Eunseo;Seo, Yoon-Kyung;Moon, Il-Kwon;Choi, Byung-Kyu;Na, Eunjoo;Nam, Uk-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.49-58
    • /
    • 2013
  • ARGO-M is a satellite laser ranging (SLR) system developed by the Korea Astronomy and Space Science Institute with the consideration of mobility and daytime and nighttime satellite observation. The ARGO-M optical system consists of 40 cm receiving telescope, 10 cm transmitting telescope, and detecting optics. For the development of ARGO-M optical system, the structural analysis was performed with regard to the optics and optomechanics design and the optical components. To ensure the optical performance, the quality was tested at the level of parts using the laser interferometer and ultra-high-precision measuring instruments. The assembly and alignment of ARGO-M optical system were conducted at an auto-collimation facility. As the transmission and reception are separated in the ARGO-M optical system, the pointing alignment between the transmitting telescope and receiving telescope is critical for precise target pointing. Thus, the alignment using the ground target and the radiant point observation of transmitting laser beam was carried out, and the lines of sight for the two telescopes were aligned within the required pointing precision. This paper describes the design, structural analysis, manufacture and assembly of parts, and entire process related with the alignment for the ARGO-M optical system.

GAIN DEGRADATION OF KVN 21-M SHAPED CASSEGRAIN ANTENNA DUE TO MISALIGNMENT OF ANTENNA OPTICS

  • Chung Moon-Hee;Byun, Do-Young;Khaikin Vladimir B.
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.4
    • /
    • pp.327-336
    • /
    • 2006
  • In this paper, gain loss of KVN (Korean VLBI Network) 21-m shaped Cassegrain antenna due to misalignment of antenna optics is calculated using ray-tracing method. It enables us to estimate alignment tolerances of feed and sub-reflector positioning. According to numerical results, KVN 21-m shaped Cassegrain antenna's gain loss is more sensitive to positions of feed and sub-reflector than in case of the equivalent classical Cassegrain antenna. The result of calculation is believed to be utilized as a possible guideline when checking the performance of the antenna system.

Experimental Sensitivity Table Method for Precision Alignment of Amon-Ra Instrument

  • Oh, Eunsong;Ahn, Ki-Beom;Kim, Sug-Whan
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.241-246
    • /
    • 2014
  • The Amon-Ra instrument is the main optical payload of the proposed EARTHSHINE satellite. It consists of a visible wavelength instrument and an IR energy channel instrument to measure a global Earth albedo. We report a new sensitivity technique for efficient alignment of the visible channel instrument. Whilst the sensitivity table method has been widely used in the alignment process, the straightforward application of the method tends to produce slow process convergence because of shop floor alignment practice uncertainties. We investigated the error sources commonly associated with alignment practices and used them when estimating the Zernike polynomial coefficients. Aided with single center field wavefront error (WFE) measurements and their corresponding Zernike polynomial coefficients, the method involves the construction and use of an experimental, instead of simulated, sensitivity table to be used for alignment state estimations. A trial alignment experiment for the Amon Ra optical system was performed and the results show that 71.28 nm in rms WFE was achieved only after two alignment iterations. This tends to demonstrate its superior performance to the conventional method.

Measurement of Primary-mirror Vertex Coordinates for a Space Camera by Using a Computer-generated Hologram and a Theodolite (컴퓨터 제작 홀로그램과 데오도라이트를 이용한 인공위성 카메라 주 반사경의 정점 좌표 측정)

  • Kang, Hye-Eun;Song, Jae-Bong;Yang, Ho-soon;Kihm, Hagyong
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.4
    • /
    • pp.146-152
    • /
    • 2017
  • Alignment of the mirrors composing a space telescope is an important process for obtaining high optical resolution and performance of the camera system. The alignment of mirrors using cube mirrors requires a relative coordinate mapping between the mirror and the cube mirror before optical-system integration. Therefore, to align the spacecraft camera mirrors, the relative coordinates of the vertex of each mirror and the corresponding cube mirror must be accurately measured. This paper proposes a new method for finding the vertex position of a primary mirror, by using an optical fiber and alignment segments of a computer-generated hologram (CGH). The measurement system is composed of an optical testing interferometer and a multimode optical fiber. We used two theodolites to measure the relative coordinates of the optical fiber located at the mirror vertex with respect to the cube mirror, and achieved a measurement precision of better than $25{\mu}m$.

Optical alignment of a high-resolution optical earth observation camera for small satellites (소형 위성용 고해상도 광학카메라의 광학정렬)

  • Kim, Eugene D.;Park, Young-Wan;Kang, Myung-Seok;Kim, Ee-Eul;Yang, Ho-Soon
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.391-396
    • /
    • 2004
  • Spaceborne earth observation or astronomical payloads often use Cassegrain-type telescopes due to the limits in mass and volume. Precision optical alignment of such a telescope is vital to the success of the mission. This paper describes the simulated optical alignment methods using interferograms, wavefront error, and reverse-optimization method for different levels of alignment accuracy. It concludes with the alignment experiment results of a Cassegrain type spaceborne camera with 300mm entrance pupil diameter.