• Title/Summary/Keyword: Space Mission

Search Result 869, Processing Time 0.031 seconds

Structural Design and Analysis of Pico-class Satellite named STEP Cube Lab

  • Jeon, Su-Hyeon;Jang, Su-Eun;Jung, Hyun-Mo;Cha, Jin-Yeong;Oh, Hyun-Ung
    • International Journal of Aerospace System Engineering
    • /
    • v.1 no.1
    • /
    • pp.34-43
    • /
    • 2014
  • The STEP Cube Lab (Cube Laboratory for Space Technology Experimental Projects) is a 1U cube satellite developed by the Space Technology Synthesis Laboratory of Chosun University to be launched in 2015. Its mission objective is twofold: to determine which of the fundamental space technologies researched at domestic universities, will be potential candidates for use in future space missions and to verify the effectiveness of the technologies by investigating mission data obtained from on-orbit operation of the cube satellite. In this paper, a structural design concept based on the 1U standard to achieve the mission objective is introduced. The validity of the design has been demonstrated by quasi-static analysis and modal analysis. In addition, a non-explosive separation device triggered by burn wire heating, which is one of the main mission payloads is introduced.

A Preliminary Impulsive Trajectory Design for (99942) Apophis Rendezvous Mission

  • Kim, Pureum;Park, Sang-Young;Cho, Sungki;Jo, Jung Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.105-117
    • /
    • 2021
  • In this study, a preliminary trajectory design is conducted for a conceptual spacecraft mission to a near-Earth asteroid (NEA) (99942) Apophis, which is expected to pass by Earth merely 32,000 km from the Earth's surface in 2029. This close approach event will provide us with a unique opportunity to study changes induced in asteroids during close approaches to massive bodies, as well as the general properties of NEAs. The conceptual mission is set to arrive at and rendezvous with Apophis in 2028 for an advanced study of the asteroid, and some near-optimal (in terms of fuel consumption) trajectories under this mission architecture are to be investigated using a global optimization algorithm called monotonic basin hopping. It is shown that trajectories with a single swing-by from Venus or Earth, or even simpler ones without gravity assist, are the most feasible. In addition, launch opportunities in 2029 yield another possible strategy of leaving Earth around the 2029 close approach event and simply following the asteroid thereafter, which may be an alternative fuel-efficient option that can be adopted if advanced studies of Apophis are not required.

Development of Mission Analysis and Design Tool for ISR UAV Mission Planning (UAV 감시정보정찰 임무분석 및 설계 도구 개발)

  • Kim, Hongrae;Jeon, Byung-Il;Lee, Narae;Choi, Seong-Dong;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.2
    • /
    • pp.181-190
    • /
    • 2014
  • The optimized flight path planning which is appropriate for UAV operation with high performance and multiplex sensors is required for efficient ISR missions. Furthermore, a mission visualization tool is necessary for the assessment of MoE(Measures of Effectiveness) prior to mission operation and the urgent tactical decision in peace time and wartime. A mission visualization and analysis tool was developed by combining STK and MATLAB, whose tool was used for UAV ISR mission analyses in this study. In this mission analysis tool, obstacle avoidance and FoM(Figure of Merit) analysis algorithms were applied to enable the optimized mission planning.

A Methodology for Evaluating Mission Suitability of Manned-Unmanned Aircraft Teaming for SEAD Missions (SEAD 임무 수행을 위한 유x무인기 협업 체계의 임무적합도 평가 방법론 연구)

  • Seo, Wonik;Lee, Hyun Moo;Kim, Jeong-Hun;Choi, Keeyoung;Jee, Cheol-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.11
    • /
    • pp.935-943
    • /
    • 2020
  • This paper presents a methodology for evaluating suitability of a manned-unmanned aerial vehicle team for a complicated mission. The study identified vehicle performance, equipment performance and level of autonomy as the key factors that affect the mission effectiveness. A manned and an unmanned aircraft were compared, and their performance was quantized in these respects. SEAD was chosen as a representative manned-unmanned team mission. The SEAD mission was broken down to a sequence of tasks. Mission experts evaluated the importance of each mark item for the mission legs. Combining the results showed proper type of aircraft for each leg depending on the complexity, safety, and importance of the task. Finally, the whole mission plan was laid out as a time-based sequence which alleviate pilot workload significantly.

Post Trajectory Insertion Performance Analysis of Korea Pathfinder Lunar Orbiter Using SpaceX Falcon 9

  • Young-Joo Song;Jonghee Bae;SeungBum Hong;Jun Bang;Donghun Lee
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.123-129
    • /
    • 2023
  • This paper presents an analysis of the trans-lunar trajectory insertion performance of the Korea Pathfinder Lunar Orbiter (KPLO), the first lunar exploration spacecraft of the Republic of Korea. The successful launch conducted on August 4, 2022 (UTC), utilized the SpaceX Falcon 9 rocket from Cape Canaveral Space Force Station. The trans-lunar trajectory insertion performance plays a crucial role in ensuring the overall mission success by directly influencing the spacecraft's onboard fuel consumption. Following separation from the launch vehicle (LV), a comprehensive analysis of the trajectory insertion performance was performed by the KPLO flight dynamics (FD) team. Both orbit parameter message (OPM) and orbit determination (OD) solutions were employed using deep space network (DSN) tracking measurements. As a result, the KPLO was accurately inserted into the ballistic lunar transfer (BLT) trajectory, satisfying all separation requirements at the target interface point (TIP), including launch injection energy per unit mass (C3), right ascension of the injection orbit apoapsis vector (RAV), and declination of the injection orbit apoapsis vector (DAV). The precise BLT trajectory insertion facilitated the smoother operation of the KPLO's remainder mission phase and enabled the utilization of reserved fuel, consequently significantly enhancing the possibilities of an extended mission.

Satellite Trajectory Correction Maneuver for Lunar Mission based on Three-Body Dynamics (달탐사 임무를 위한 3체 운동방정식 기반의 인공위성 궤적보정 기동)

  • Cho, Dong-Hyun;Jung, Young-Suk;Lee, Dong-Hun;Jung, Bo-Young;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.875-881
    • /
    • 2010
  • During the lunar mission, spacecraft are subject to various unexpected disturbance sources such as third body attraction, solar pressure and operating impulsive maneuver error. Therefore, efficient trajectory correction maneuver (TCM) strategy must be required to follow the designed mission trajectory. In the early days of space exploration, the mission trajectory has been designed by using patched conic approach based on two-body dynamics for the lunar mission. Thus the TCM based on two-body dynamics has been usually adopted. However, with the advanced in computing power, the mission trajectory based on three-body dynamics is attempted recently. Thus, these approaches based on two-body dynamics are essentially different from real environment and large amount of energy for the TCM is required. In this work, we study the trajectory correction maneuver based on three-body dynamics.

Operation of the Radio Occultation Mission in KOMPSAT-5

  • Choi, Man-Soo;Lee, Woo-Kyoung;Cho, Sung-Ki;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.4
    • /
    • pp.345-352
    • /
    • 2010
  • Korea multi-purpose satellite-5 (KOMPSAT-5) is a low earth orbit (LEO) satellite scheduled to be launched in 2010. To satisfy the precision orbit determination (POD) requirement for a high resolution synthetic aperture radar image of KOMPSAT-5, KOMPSAT-5 has atmosphere occultation POD (AOPOD) system which consists of a space-borne dual frequency global positioning system (GPS) receiver and a laser retro reflector array. A space-borne dual frequency GPS receiver on a LEO satellite provides position data for the POD and radio occultation data for scientific applications. This paper describes an overview of AOPOD system and operation concepts of the radio occultation mission in KOMPSAT-5. We showed AOPOD system satisfies the requirements of KOMPSAT-5 in performance and stability.

Operational Report of the Mission Analysis and Planning System for the KOMPSAT-I

  • Lee, Byoung-Sun;Lee, Jeong-Sook;Kim, Jae-Hoon;Lee, Seong-Pal;Kim, Hae-Dong;Kim, Eun-Kyou;Park, Hae-Jin
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.46-46
    • /
    • 2003
  • Since its launching on 21 December 1999, the KOrea Multi-Purpose SATellite-Ⅰ (KOMPSAT-Ⅰ) has been successfully operated by the Mission Control Element (MCE), which was developed by the Electronics and Telecommunications Research Institute (ETRI). Most of the major functions of the MCE have been successfully demonstrated and verified during the three years of the mission life of the satellite. The Mission Analysis and Planning Subsystem (MAPS), which is one of the four subsystems in the MCE, played a key role in the Launch and Early Orbit Phase (LEOP) operations as well as the on-orbit mission operations. This paper presents the operational performances of the various functions in MAPS. We show the performance and analysis of orbit determinations using ground-based tracking data and GPS navigation solutions. We present four instances of the orbit maneuvers that guided the spacecraft from injection orbit into the nominal on-orbit. We include the ground-based attitude determination using telemetry data and the attitude maneuvers for imaging mission. The event prediction, mission scheduling, and command planning functions in MAPS subsequently generate the spacecraft mission operations and command plan. The fuel accounting and the realtime ground track display also support the spacecraft mission operations. We also present the orbital evolutions during the three years of the mission life of the KOMPSAT-Ⅰ.

  • PDF

Mission Trajectory Design for Lunar Explorer using Variable Low Thrust (가변 저추력을 이용한 달탐사 임무궤도 설계)

  • Lee, Seung-Hun;Park, Jong-Oh;Sim, Eun-Sup;Song, Young-Joo;Park, Sang-Yong
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.91-98
    • /
    • 2008
  • Since the 1st space race between the United States and Soviet Union during the 1960s, we are competing 2nd space race to occupy the Lunar territory. Since the United States announced to construct the Lunar Base by the end of 2020, ED, Japan, and China launched Lunar explorers successfully. Even India is planning to launch a Lunar explorer in 2008. Korean government also announced that the Korea will launch first Lunar explorer in 2020. In this research Lunar mission trajectory design which will be fundamental data for Lunar mission with variable low thrust and Lunar mission trajectory which has a similar mission specification to SMART-1 are presented.

  • PDF

Optimal Path Planning Algorithm for Visiting Multiple Mission Points in Dynamic Environments (동적 변화 환경에서 다중 임무점 방문을 위한 최적 경로 계획 알고리즘)

  • Lee, Hohyeong;Chang, Woohyuk;Jang, Hwanchol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.5
    • /
    • pp.379-387
    • /
    • 2019
  • The complexity of path planning for visiting multiple mission points is even larger than that of single pair path planning. Deciding a path for visiting n mission points requires conducting $n^2+n$ times of single pair path planning. We propose Multiple Mission $D^*$ Lite($MMD^*L$) which is an optimal path planning algorithm for visiting multiple mission points in dynamic environments. $MMD^*L$ reduces the complexity by reusing the computational data of preceding single pair path planning. Simulation results show that the complexity reduction is significant while its path optimality is not compromised.