• Title/Summary/Keyword: Space Images

Search Result 2,339, Processing Time 0.033 seconds

A study on lighting angle for improvement of 360 degree video quality in metaverse (메타버스에서 360° 영상 품질향상을 위한 조명기 투사각연구)

  • Kim, Joon Ho;An, Kyong Sok;Choi, Seong Jhin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.499-505
    • /
    • 2022
  • Recently, the metaverse has been receiving a lot of attention. Metaverse means a virtual space, and various events can be held in this space. In particular, 360-degree video, a format optimized for the metaverse space, is attracting attention. A 360-degree video image is created by stitching images taken with multiple cameras or lenses in all 360-degree directions. When shooting a 360-degree video, a variety of shooting equipment, including a shooting staff to take a picture of a subject in front of the camera, is displayed on the video. Therefore, when shooting a 360-degree video, you have to hide everything except the subject around the camera. There are several problems with this shooting method. Among them, lighting is the biggest problem. This is because it is very difficult to install a fixture that focuses on the subject from behind the camera as in conventional image shooting. This study is an experimental study to find the optimal angle for 360-degree images by adjusting the angle of indoor lighting. We propose a method to record 360-degree video without installing additional lighting. Based on the results of this study, it is expected that experiments will be conducted through more various shooting angles in the future, and furthermore, it is expected that it will be helpful when using 360-degree images in the metaverse space.

Analysis of Time Series Changes in the Surrounding Environment of Rural Local Resources Using Aerial Photography and UAV - Focousing on Gyeolseong-myeon, Hongseong-gun - (항공사진과 UAV를 이용한 농촌지역자원 주변환경의 시계열 변화 분석 - 충청남도 홍성군 결성면을 중심으로 -)

  • An, Phil-Gyun;Eom, Seong-Jun;Kim, Yong-Gyun;Cho, Han-Sol;Kim, Sang-Bum
    • Journal of Korean Society of Rural Planning
    • /
    • v.27 no.4
    • /
    • pp.55-70
    • /
    • 2021
  • In this study, in the field of remote sensing, where the scope of application is rapidly expanding to fields such as land monitoring, disaster prediction, facility safety inspection, and maintenance of cultural properties, monitoring of rural space and surrounding environment using UAV is utilized. It was carried out to verify the possibility, and the following main results were derived. First, the aerial image taken with an unmanned aerial vehicle had a much higher image size and spatial resolution than the aerial image provided by the National Geographic Information Service. It was suitable for analysis due to its high accuracy. Second, the more the number of photographed photos and the more complex the terrain features, the more the point cloud included in the aerial image taken with the UAV was extracted. As the amount of point cloud increases, accurate 3D mapping is possible, For accurate 3D mapping, it is judged that a point cloud acquisition method for difficult-to-photograph parts in the air is required. Third, 3D mapping technology using point cloud is effective for monitoring rural space and rural resources because it enables observation and comparison of parts that cannot be read from general aerial images. Fourth, the digital elevation model(DEM) produced with aerial image taken with an UAV can visually express the altitude and shape of the topography of the study site, so it can be used as data to predict the effects of topographical changes due to changes in rural space. Therefore, it is possible to utilize various results using the data included in the aerial image taken by the UAV. In this study, the superiority of images acquired by UAV was verified by comparison with existing images, and the effect of 3D mapping on rural space monitoring was visually analyzed. If various types of spatial data such as GIS analysis and topographic map production are collected and utilized using data that can be acquired by unmanned aerial vehicles, it is expected to be used as basic data for rural planning to maintain and preserve the rural environment.

The Visual Aesthetics of Drone Shot and Hand-held Shot based on the Representation of Place and Space : focusing on World Travel' Peninsula de Yucatán' Episode (장소와 공간의 재현적 관점에서 본 드론 쇼트와 핸드헬드 쇼트의 영상 미학 : <세계테마기행> '유카탄 반도'편을 중심으로)

  • Ryu, Jae-Hyung
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.3
    • /
    • pp.251-265
    • /
    • 2020
  • The Drone shot is moving images captured by a remotely controlled unmanned aerial vehicle, takes usually bird's eye view. The hand-held shot is moving images recorded by literal handheld shooting which is specialized to on-the-spot filming. It takes a walker's viewpoint through vivid realism of its self-reflexive camera movements. The purpose of this study is to analyze comparatively aesthetic functions of the drone shot and the hand-held shot. For this, the study understood Certeau's concepts of 'place' and 'space,' chose World Travel 'Peninsula de Yucatan' episode as a research object, and analytically applied two concepts to the scenes clearly presenting two shots' aesthetic characteristics. As a result, the drone shot took the authoritative viewpoint providing the general information and atmosphere as it overlooked the city with silent movements removing the self-reflexivity. This aesthetic function was reinforced the narration and subtitles mediating prior-knowledge about proper rules and orders of the place. The drone shot tended to project the location as a place. Conversely, the hand-held shot practically experienced the space with free walking which is free from rules and orders inherent in the city. The aesthetics of hand-held images represented the tactic resisting against the strategy of a subject of will and power in that the hand-held shot practiced anthropological walking by means of noticing everyday lives of the small town and countryside than main tourist attraction. In opposition to the drone shot, the hand-held shot tended to reflect the location as a space.

GROUND-BASED NEAR-INFRARED CENSUS FOR YOUNG STAR CLUSTERS IN THE DWARF STARBURST GALAXY NGC 1569

  • Kyeong, Jae-Mann;Sung, Eon-Chang;Kim, Sang-Chul;Chaboyer, Brian
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • JHK near-infrared photometry of star clusters in the dwarf irregular/dwarf starburst galaxy NGC 1569 are presented. After adopting several criteria to exclude other sources (foreground stars, background galaxies, etc.), 154 candidates of star clusters are identified in the near-infrared images of NGC 1569, which include very young star clusters. Especially, from analysis based on theoretical background, we found ten very young star clusters near the center of NGC 1569. The total reddening values toward these clusters are estimated to be $A_V$=1-9 mag from comparison with the theoretical estimates given by the Leitherer et al. (1999)'s star cluster model.

Representation of Translucent Objects using Multiple Projection Images for Real-time Rendering (시점을 달리한 여러 장의 투영 영상을 이용한 반투명 재질의 실시간 렌더링)

  • Lee, Jae-Young;Kim, Kang-Yeon;Yoo, Jae-Doug;Lee, Kwan-H.
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.878-883
    • /
    • 2006
  • 반투명 물체(Translucent Object)는 불투명한 물체와는 달리 물체 내부에서 산란이 일어난다. 반투명 물체의 한 표면(Surface)을 렌더링하기 위해서는 그 표면의 정규 벡터뿐만 아니라 그 표면의 주변 기하 정보가 필요하다. 그러나 그래픽 하드웨어 구조는 반투명 물체의 실시간 렌더링의 구현에 많은 제약을 준다. 3D 기하 정보 대신에 라디언스 맵(Radiance map)과 깊이 맵(Depth map)과 같은 투영 영상(Projected Image)을 기반으로 하는 영상 공간 접근 방법(Image Space Approach)을 사용함으로써 GPU 상에서 반투명 재질을 실시간으로 표현할 수 있다. 본 논문에서는 영상 공간 접근 방법(Image Space Approach)의 연장선에서 시점을 달리한 여러 장의 투영 영상을 이용함으로써 기존의 한 장의 투영 영상만을 이용한 방법이 가지고 있는 가시성 한계점을 해결한다. 또한 복수 투영 영상의 이용에 따른 계산량 증가에 의해서 손실된 프레임 속도(Frame Rate)에 대해 분석한다.

  • PDF

Detection of Lane Marking Candidates by Using Scale-space (스케일-공간을 이용한 차선 마킹 후보 검출)

  • Yoo, Hyeon-Joong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.43-53
    • /
    • 2013
  • Lane marking detection based on a mono camera sensor provides a low cost solution to both ITS (intelligent transportation systems) and DAS (driver assistant systems). A number of methods and implementations have been reported in the literature. However, reliable detection is still an issue. Traditional approaches are mostly based on statistics or Hough transforms. However, the former approaches usually include many irrelevant detection areas, and the latter are not practical because actual lanes are not usually suitable for the approximation with linear or polynomial equations. In this paper, we focus on increasing the reliability of detection by reducing the detection of irrelevant areas while improving the detection of actual lane marking areas, which is usually a tradeoff for most conventional approaches. We use scale-space for that. Through experiments with real images obtained from various environments, we could achieve a significant improvement over traditional approaches.

A NOTE ON OPTIMAL RECONSTRUCTION OF MAGNETIC RESONANCE IMAGES FROM NON-UNIFORM SAMPLES IN k-SPACE

  • Lee, June-Yub
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.1
    • /
    • pp.35-42
    • /
    • 2010
  • A goal of Magnetic Resonance Imaging is reproducing a spatial map of the effective spin density from the measured Fourier coefficients of a specimen. The imaging procedure can be done by inverse Fourier transformation or backward fast Fourier transformation if the data are sampled on a regular grid in frequency space; however, it is still a challenging question how to reconstruct an image from a finite set of Fourier data on irregular points in k-space. In this paper, we describe some mathematical and numerical properties of imaging techniques from non-uniform MR data using the pseudo-inverse or the diagonal-inverse weight matrix. This note is written as an easy guide to readers interested in the non-uniform MRI techniques and it basically follows the ideas given in the paper by Greengard-Lee-Inati [10, 11].

Narrative Time and Typographical Space: Towards a Typographical Narratology

  • Kim Chang-Rea;Park Jung-Sik
    • Archives of design research
    • /
    • v.19 no.3 s.65
    • /
    • pp.59-70
    • /
    • 2006
  • Narratologists have long raised the question of how narrative theories could be applied to other disciplines that involve stories and storytelling. Focusing on recently revitalized concepts of space, sequence, and story, this article attempts to illustrate narrative constructions in various fields of arts and humanities and examine them particularly in typographical works. Through the concept of narrativity, this article highlights the prevalent uses of narrative in typography and scrutinizes the ways in which a sense of storyness is forming and emerging in some typographical works. Particularly emphasized are the importance of and interplay between the formal and cultural attributes of narrative that transform the spatial world of visual images to the temporal world of stories. Narrative is arguably the most familiar, interesting, and effective medium of communication regardless of age, race, and culture, and can be critically rethought to apply to typography and design.

  • PDF

Development of an Earth Observation Optical Payload Simulator

  • Lee, Jong-Hoon;Lee, Jun-Ho;Cheon, Yee-Jin
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.35.1-35.1
    • /
    • 2008
  • The importance on the simulation of earth observation optical payloads has been recently emphasized in order to estimate on-orbit imaging performance of the payloads. The estimation should consider all aspects of payload development; design, manufacture, test, assembly, launch and space environment. Until recently several studies have been focused the evaluation of the individual factors rather than the integrated. This paper presents the development of an integrated payload simulator. The simulator analyzes the payload imaging performance based on MTF(Modulation Transfer Function) calculations of the major factors (Diffraction, Aberration, Detector integration, Image motion and etc.) and the simulator can generate realistic artificial earth images as taken by defined earth observation payloads. The simulator is developed for the use of evaluating pre- and post-launch imaging performance and assisting on-board calibration of COMPSAT-3.

  • PDF

Image Reconstruction Using Line-scan Image for LCD Surface Inspection (LCD표면 검사를 위한 라인스캔 영상의 재구성)

  • 고민석;김우섭;송영철;최두현;박길흠
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.4
    • /
    • pp.69-74
    • /
    • 2004
  • In this paper, we propose a novel method for improving defect-detection performance based on reconstruction of line-scan camera images using both the projection profiles and color space transform. The proposed method consists of RGB region segmentation, representative value reconstruction using the tracing system, and Y image reconstruction using color-space transformation. Through experiments it is demonstrated that the performance using the reconstructed image is better than that using aerial image for LCD surface inspection.