시점을 달리한 여러 장의 투영 영상을 이용한 반투명 재질의 실시간 렌더링

이재영¹, 김강연², 유재덕³, 이관행⁴ 광주과학기술원¹²³⁴ { jylee81¹, k2y00²,uranus³}@gist.ac.kr, lee⁴@kyebek.gist.ac.kr

Representation of Translucent Objects using Multiple Projection Images for Real-time Rendering

Jae Young Lee¹, Kang Yeon Kim², Jae Doug Yoo³, Kwan H. Lee⁴ GIST ¹²³⁴

요 약

반투명 물체(Translucent Object)는 불투명한 물체와는 달리 물체 내부에 서 산란이 일어난다. 반투명 물체의 한 표면(Surface)을 렌더링하기 위해서 는 그 표면의 정규 벡터뿐만 아니라 그 표면의 주변 기하 정보가 필요하다. 그러나 그래픽 하드웨어 구조는 반투명 물체의 실시간 렌더링의 구현에 많은 제약을 준다. 3D 기하 정보 대신에 라디언스 맵(Radiance map)과 깊이 맵 (Depth map)과 같은 투영 영상(Projected Image)을 기반으로 하는 영상 공 간 접근 방법(Image Space Approach)을 사용함으로써 GPU 상에서 반투명 재질을 실시간으로 표현할 수 있다.

본 논문에서는 영상 공간 접근 방법(Image Space Approach)의 연장선에서 시점을 달리한 여러 장의 투영 영상을 이용함으로써 기존의 한 장의 투영 영 상만을 이용한 방법이 가지고 있는 가시성 한계점을 해결한다. 또한 복수 투 영 영상의 이용에 따른 계산량 증가에 의해서 손실된 프레임 속도(Frame Rate)에 대해 분석한다.

Keyword : real-time rendering, translucency, image space approach, dipole approximation

1. 서론

컴퓨터 그래픽스 분야에서는 일반적으로 불투 명(Opaque), 투명(Transparent) 물체와는 달리 물체 내부에서 산란이 일어나는 물체를 반투명 (Translucent) 물체라고 한다. 우리 주변에서 흔히 볼 수 있는 사람의 피부, 우유와 같은 물체들은 반투명한 성질을 띤다 [1]. 불투명 물체는 표면 위 산란(Surface Scattering)만 일어나며 한 지점에서 방 출되는 빛의 양은(Light Intensity)은 표면의 정규 벡터(Surface 관측자의 Normal), 시선(View Direction), 입사되는 빛의 각도(Incident Direction) 등 세 가지 요인에 의해서만 결정된다 (그림 1-(a)). 반면 반투명 물체의 경우 빛이 표면을 투과 한 이후 표면 아래의 산란(Subsurface Scattering)이 일어나므로 빛이 방출되는 표면의 주변 기하 정보 가 필요하다 (그림 1-(b)). 따라서 이러한 반투명 물체를 표현하기 위해서는 기존의 퐁 라이팅 모델 (Phong Lighting Model)과 같은 불투명한 물체의 반 사 모델(Reflectance Model)을 반투명 물체에는 적 절하지 않다 [1][2].

반투명 재질의 렌더링에 관한 연구는 비실시 간 렌더링에서부터 이루어져 최근 실시간 렌더링 을 구현하고자 하는 연구가 이루어지고 있다. 일 반적으로 그래픽 하드웨어에서 반투명 물체에 대 한 실시간 렌더링은 구조적으로 불가능하다. 하지 만 몇 가지 제한된 조건 아래에서는 성과가 이루 어졌다. 본 논문에서는 영상 공간 접근 방법 (Image Space Approach)의 연장선상에서 영상 공간 접근 방법이 가지고 있는 문제점을 해결함으로써 더 좋은 결과를 생성하는 방법을 제시한다. 또한 렌더링 속도를 비교함으로써 본 방법의 유용성에 대한 분석을 수행하였다.

2. 관련 연구 및 배경 지식

방사열 전달(Radiative Heat Transfer)나 빛의 이 동(Light Transport)에 대한 물리학 지식을 바탕으로 반투명 물체에 대한 비실시간 렌더링(Off-Line Rendering)을 위한 방법론은 1970 년도부터 꾸준히 제시되었다 [3][4]. 2001 년 이후 표면 아래의 산란 을 효과적으로 표현하기 위해서 쌍극자 근사법 (Dipole Approximation)이 적용되었다 [3]. 이러한 비실시간 렌더링을 위한 연구를 기반으로 최근에 는 실시간 렌더링을 위한 노력이 있다.

표면 아래의 산란을 단일 산란(Single Scattering)과 복수 산란(Multiple Scattering)으로 나 눌 수 있다 [3]. 단일 산란은 기존의 광선추적법 (Ray Tracing)을 적절히 사용하여 표현한다 [5]. 복 수 산란은 쌍극자 근사법(Diopole Approximation)에 의해서 근사적으로 표현한다 [3] (1).

$$S(x_{i,}w_{i};x_{o},w_{o}) = \frac{1}{\pi}F_{t}(\eta,w_{o})R_{d}(||x_{i}-x_{o}||)F_{t}(\eta,w_{i}) \quad (1)$$

S 는 단위 면적 당 산란되는 빛의 양을 나타 $내고, <math>R_d$ 항은 흡수 계수(Absorption Coefficient), 산 란 계수(Reduced Scattering Coefficient), 굴절률(η) 과 입사점과 방사점의 거리 $||x_i - x_o||$ 에 의해 결 정된다. F_t 는 표면을 투과한 빛의 양을 나타내는 프레넬 항(Fresnel Factor)이다 [3]. 이 논문에서는 내부 산란이 매우 많이 일어나는 물체로 가정하여 단일 산란에 대하여 고려하지 않고 복수의 산란만 으로 반투명 물체를 표현한다 [5].

반투명 물체의 실시간 렌더링을 위해서

PRT(Pre-computed Radiance Transfer) 방법과 영상 공간 접근 방법(Image Space Approach)이 제시되었 다. PRT는 표면 아래 산란을 미리 계산하여 각 정 점에 저장한 후, 실행 시(Run-Time)에 저장된 정보 를 이용하여 최종 결과를 표현한다 [9]. 영상 공간 방법론은 3 차원 기하 정보를 2 차원 영상으로 저 장한 다음에 그 영상을 이용하여 하는 산란에 따 라 방출되는 빛의 양을 계산한다 [6][7]. 깊이 맵 을 기반으로 하는 영상 기반 렌더링(Depth Image Based Rendering)과 기본적으로 동일한 방법을 취 한다. 그래픽스 하드웨어의 픽셀 셰이더(Pixel Shader)의 구조가 이미지 프로세싱에 유용하게 설 계 되었기 때문에 영상 공간 방법론은 구현이 쉽 다. 또한 PRT 와 같은 전처리 시간을 필요로 하지 않는다 [9]. 하지만 이러한 방법론은 다음과 같은 문제점을 갖는다. 그림 2 은 앞쪽을 돌출된 기하 정보를 광원(Light Source)를 오른 측면에 놓고 렌 더링하는 경우를 보여준다. 기존의 영상 공간 접 근방법에 의해서 표면 아래 산란의 계산을 위한 영상 공간 내에서 얻어진 샘플 포인트들의 위치는 그림에서 보는 것과 같다. 이 경우 샘플 포인트는 광원에 의해 가장 많은 영향을 받게 되는 영역 R_A에 대한 어떠한 정보도 가지고 있지 않게 된 다. 따라서 이 경우 적절한 샘플 포인트를 얻었다 고 할 수 없다. 이러한 문제는 3 차원 정보 대신에 2 차원 정보를 사용하기 때문에 발생하는 문제로 서 모든 영상 기반 렌더링에서 발생하는 결점이다. 본 논문에서는 이러한 문제점을 해결하기 위해 시 점을 달리한 여러 장의 투영 영상을 사용하는 방 법을 취한다.

3. 제안된 방법

본 논문에서는 입사되는 빛의 양을 저장한 라디언스 맵(Radiance-map)과 뷰어의 위치에서 깊 이 정보를 저장하는 깊이 맵(Depth-map)이 사용하 여 이러한 접근방법을 반투명 재질에 이용하면 볼 록한 물체에 대해서 Viewer 의 방향에 대한 모든 기하 정보를 알 수 있다 [6][7]. 그림 3 은 제안된 방법의 프로세스를 나타낸다. 첫 번째 과정으로 3 차원 기하 정보를 서로 다른 시점들에 투영함으로 써 라디언스 맵과 깊이 맵을 생성하고 생성된 맵 을 5 개의 이미지에 저장한다. 다음 과정에서 그 이미지들을 이용하여 최종 결과를 생성한다.

그림 3. 제안된 방법의 프로세스

3-1 투영 영상의 실시간 생성

최신 그래픽하드웨어의 성능을 효율적으로 이 용하여 투영 영상(Projected Image)을 실시간으로 생성할 수 있다. 텍스처 메모리(Texture Memory)에 2 차원 투영 영상을 렌더링하고 두 번째 패스의 픽셀 셰이더에서 이전 과정의 영상을 텍스처로서 사용하여 렌더링할 수 있다. 이미지의 RGBA, 4 개 의 채널 중 RGB 에는 각각의 컬러 채널에 따라서 픽셀의 위치에 입사된 빛의 양에 대한 라디언스 정보를 저장하고 A 채널에는 깊이 정보를 저장한 다.

앞서 다룬 영상 공간 방법론이 가지고 있는 문제를 해결하기 위해 정면을 포함한 5 장의 투영 영상을 생성한다 (그림 4). 투영 영상 생성에 5 개 의 패스(Pass)와 최종 이미지 생성에 1 개의 패스, 총 6개의 패스가 필요하다.

그림 4. 시점을 달리한 5 장의 투영 영상의 생성

그림 5. 생성된 투영 영상. 백색광일 때의 라디안 스 맵.

3-2 시점을 달리한 투영 영상을 이용한 최종 결과 생성

여러 장의 투영 영상 중 주변 영역에 대한 정 보를 가장 잘 포함하고 있는 것을 선택한다. 이때 는 각 픽셀의 법선 벡터 값을 이용한다. 법선 벡 터 값과 투영 영상을 생성할 때의 시점의 방향이 가장 일치하는 것을 고른다. 그림 6 은 법선 벡터 값에 따라서 구분되는 영역을 나타낸다. 법선 벡 터의 방향에 따라서 5 개의 영역으로 나뉘고 각각 의 영역 내의 픽셀의 값을 결정할 때에 그에 따라 서 선택된 투영 영상을 참조한다.

그림 6. 법선 벡터 값에 따라서 분할된 영역

그러나 단순히 법선 벡터에 대한 선택이 올바 른 투영 영상을 선택하는 것은 아니다. 그림 8 과 같이 포인트 *x* 에 대해 법선 벡터에 대해서만 고 려한다면 영상 3을 참조하게 된다. 하지만 포인트 *x* 에 대한 라디언스 정보와 깊이 정보가 영상 3 에 저장되어 있지 않기 때문에 영상 3 을 참조하 는 것은 적당하지 않다. 따라서 이러한 경우에는 영상 1을 참조하게 된다.

그림 8. 선택된 투영 영상에 대한 가시성 시험

3-3 쌍극자 근사법에 기반한 표면 아래 산란 의 표현

라디언스 맵(Radiance-map)의 정보를 이용하여 주변 영역에서 들어오는 빛의 양을 샘플링 할 수 있다. 이 과정에서는 중요도 샘플링(Importancesampling)을 사용한다. 그리고자 하는 픽셀에서 가 까운 영역은 많은 수를 먼 영역은 적은 수의 샘플 을 취한다 [7]. 그림 7 는 샘플링 패턴을 나타낸다. 중앙점이 그리고자 하는 픽셀이고 나머지 주변 점 이 샘플링을 수행하는 지점이다. 하나의 픽셀을 그리기 위해 총 각 RGB 채널에 대해서 16 번의 샘플링을 수행하므로 총 48 번 투영 영상을 참조 한다.

4. 결과

생성된 투영 영상은 하드웨어에서 제공하는 큐브 텍스처에 저장된다. 일반적으로 환경 맵에 사용되는 큐브 텍스처는 6 방면을 가지는데 이 중 5 개의 면에 5 개의 투영 영상을 저장하고 사용한 다.(그림 9)

그림 9. 큐브 텍스처에 저장된 투영 이미지

다음의 표 1 은 실험 환경을 나타낸다.

CPU	Pentium 4 530 3.0G Hz		
Memory	1G byte		
GPU	Geforce 7800GTX		
Video memory	256mb		
Platform	Window XP		
3D API	DirectX 9.0c		
Resolution	512 x 512		

표 1. 실행 환경

그림 10. 한 장의 영상만을 이용한 방법을 이용한 결과. 스탠포드 버니 모델(위). 코 부분을 확대한 그림(아래).

그림 10 는 카메라 위치와 동일한 방향에서 생성된 한 장의 투영 영상를 사용한 경우의 결과 를 나타낸다. 앞서 설명한 경우를 나타내기 위해 서 조명은 오른쪽 90 도 각도에 비추고 있다. 이 그림의 앞쪽으로 돌출되어 있는 버니 모델의 코 부분에서는 푸른 색이 튀는 것을 발견할 수 있다. 이러한 현상은 RGB 채널 중에 푸른색을 제외한 나머지 채널의 샘플링이 제대로 이루어 지지 않기 때문에 생기는 현상이다.

그림 11. 제안된 방법으로 렌더링한 결과.

그림 11 은 제안된 방법에 따라서 시점을 달 리한 여러 장의 투영 영상을 이용하여 렌더링한 최종 결과를 보여준다. 한 장의 투영 영상을 사용 했을 때의 결과와는 달리 부드러운 결과를 얻을 수 있다. 이러한 결과를 얻을 수 있는 이유는 코 부분의 측면을 렌더링할 때는 측면에서 얻은 투영 영상을 사용하기 때문에 좀더 정확하고 표면 아래 산란에 대한 풍부한 정보를 얻을 수 있기 때문이 다.

표 2 은 두 경우에 렌더링 속도를 비교한다. 제안된 방법은 기존의 한 장의 영상을 이용하는 방법에 비해 부가적인 계산이 더 필요하기 때문에 렌더링 속도의 저하를 가져온다. 5 장의 투영 영상 을 생성하고 또한 생성된 여러 장의 영상 중에 참

Model name	# of Polygon	# of Vertex	FPS-1	FPS-2
Decimated stanford bunny	17,082	8,543	50.41	15.81
Walker head	20,720	10,431	57.77	17.12
Stanford bunny	68,328	38,620	34.15	10.91
Gargole	100,000	20,000	27.52	8.83
Gist-MP3	460,612	235,957	14.55	5.45
Gist-Monkey	969,920	48,4962	14.17	4.04

표 2. FPS(Frame per second) 비교표. FPS-1: 한 장의 영상을 사용하는 방법에 렌더링 속도, FPS-2: 제안 된 방법에 의한 렌더링 속도)

조할 영상을 고르는 과정에 있어서 계산량이 늘어 난다. 약 3 배 정도의 계산량 증가가 있기 때문에 적절한 수준의 데이터를 사용해야 한다.

5. 결론 및 향후 연구 과제

본 연구에서는 시점을 달리한 여러 장의 투영 영상을 이용함으로써 기존의 반투명 재질의 실시 간 렌더링을 위한 방법이 가지고 있는 한계점을 향상 시킨다. 이러한 방법은 기존의 연구에 비해 서 부가적인 계산을 수행함으로써 생기는 렌더링 속도의 저하를 가져 오기 때문에 적절한 량의 기 하 정보를 이용해야 한다. 이러한 방법은 투영 영 상을 사용하기 때문에 오목한 물체에는 완벽한 적용이 적당하지 않은 문제가 발생한다. 또한 이 러한 방법은 복수 산란에 대해서만 계산이 가능하 기 때문에 단일 산란에 대한 고려가 필요하다. 단 일 산란의 계산은 좀 더 많은 계산이 필요하지만 차후 더욱 강력한 하드웨어의 발전은 이러한 계산 을 가능하게 할 것이다.

감사의 글

본 연구는 광주과학기술원 실감방송 연구센터 를 통한 정보통신부 대학 IT 연구센터(ITRC) 사업 의 지원과 광주과학기술원의 실감 컨텐츠 연구센 터(ICRC)를 통한 과학기술부 특정 연구개발 사업 의 지원에 의한 것입니다.

참고 문헌

- Jan J. Koenderink, and Andrea van Doorn, "Shading in the Case of Translucent Objects" In Proceedings of SPIE, 4299, p312-320, 2001.
- [2] Roland W. Fleming, Henrik Wann Jensen, and Heinrich H Bülthoff, "Perceiving translucent

materials", Proceedings of the 1st Symposium on Applied perception in graphics and visualization, Los Angeles, California, pp.127-134, 2004.

- [3] Henrik Wann Jensen, Stephen R. Marschner, Marc Levoy, and Pat Hanrahan, "A Practical Model for Subsurface Light Transport", In Proceedings of SIGGRAPH 2001, ACM, New York, pp511-518, 2001.
- [4] Henrik Wann Jensen, Juan Buhler, "A Rapid Hierarchical Rendering technique for Translucent Materials", In Proceedings of SIGGRAPH 2002, ACM, New York, 21, 3, pp576-581, 2002
- [5] Hendrik P.A. Lensch, Michael Goesele, Philippe Bekaert, Jan Kautz, Marcus A. Magnor, Jochen Lang, and Hans-Peter Seidel, "Interactive Rendering of Translucent Objects", In Proceedings of the 10th Pacific Conference on Computer Graphics and Applications 2002, pp214-224, October 2002
- [6] Carsten Dachsbacher, and Mare Stamminger. "Translucent Shadow Maps", In the Proceedings of the 14th Eurographics Symposium on Rendering 2003, pp197-201, 2003.
- [7] Tom Mertens, Jan Kautz, Philippe Bekaert, Frank Van Reeth, and Hans-Peter Seidel. "Efficient Rendering of Local Subsurface Scattering", In Proceedings of the 11th Pacific Conference on Computer Graphics and Applications, p51-58, October08-10, 2003.
- [9] Xuejun Hao, and Amitabh Varshney, "Real-Time Rendering of Translucent Meshes", ACM Transactions on Graphics, Vol. 23, No.2, April 2004, pp.120-142, 2004