In this paper, we propose a system to walk around the world with virtual reality technology. Although the virtual reality users are interested in the virtual travel contents, the conventional virtual travel contents have limited space for experiencing and lack of interactivity. In order to solve the problem of lack of realism and limited space, which is a disadvantage of existing contents, this system created a virtual space using Google Street View image. Users can have realistic experience with real street images, and travel a vast area of the world provided by Google Street View image. Also, a virtual reality headset and a treadmill equipment are used so that the user can actually walk in the virtual space, which maxmizes user interactivity and immersion. We expect this system contributes to the leisure activities of virtual reality users by allowing natural walking trip from famous tourist spots to even mountain roads and alleys.
This study has analysed the composition elements in a cafe space where visual transfer-elements are filled and the perceptual characteristics of facade designs with the purpose of drawing any important elements to advertisement and their related items for uniqueness of designs. For the analysis of the perception process shown in the consecutive situations of observing and visiting cafes, the cafe facade was grouped and stereotyped for the analysis of perceptual characteristics and significant composition elements for better designing of cafes through survey with representative facades as subjects. The conclusions from this study are the followings. First, for the uniqueness specific to cafes to be integrated into facade, memory was chosen first as the most significant advertisement factor followed by interest as with male and attention as with female. The memory has much to do with furniture and finishing material of Clause (4), Chapter 4.1 and the types having effects on perception of Clause (1) and the atmosphere having effect on that of Clause (2) were found to be major factors to attention and interest. Second, it was found out that women preferred horizontally stable partition and men clearly divided facades. The factor of shape was observed first among the constituents of facade followed by color. There was no difference with 'shape' between men and women and color was found to be a space constituent having a lot of effects on women. Third, the memory of experience from visiting a cafe was very likely to offer the motivation of visiting it again, on which furniture had the most effect followed by finishing material and color. Such elevation elements as facade and logo were found not to have effect on the memory or the re-visit. Any intention of visiting again seemed to be influenced by such comprehensive images as atmosphere rather than by any concrete facade, furniture, or appliance. From the above viewpoint, facade design should have any uniqueness or impressive feature as well as the effect of making passers-by drop in and attracting them into the shop. The analysis of attributes of facade constituents revealed that the abstract images in addition to the configuration of facade had much to do with interest or behavior.
This study presents a greening plan for the under space of elevated rail tracks to reducing landscape impairment and improve the streetscape. This study focuses on a section of the Daegu Metro line number 3 that includes a concentration of high-rise apartments and commercial areas. First, different types of planting were categorized for the under space of the elevated rail track, and then images of each planting type were created using a 3D simulation tool to evaluate the visual characteristics. The landscape images and related adjectives were assessed using a survey. As a result, rows of flower trees received the highest evaluation, and 'harmony' was identified as the most important factor affecting the railscape preference. These results can be important data for establishing an efficient greening plan for the under space of elevated rail tracks.
The Journal of Korean Institute of Information Technology
/
v.16
no.12
/
pp.13-24
/
2018
Recently, light pollution has become a serious environment issue caused by excessive uses of artificial light. Central and local governments have made efforts to manage light pollution and mitigate light pollution damages. Developing methods to diagnose light pollution is critical to effectively monitor light pollution conditions in Seoul. This study develops a methodology to create a map that presents the status of light pollution in Seoul, using International Space Station(ISS) night-time images. Through the map, we evaluated the areas that show high levels of light intensity and found out local characteristics of light intensity; Commercial area, office building concentrated area, and large sports facilities. The result of study provides basic understanding to present a new way for monitoring light pollution in urban sites.
Journal of the Korea Society of Computer and Information
/
v.28
no.1
/
pp.65-70
/
2023
In this paper, we propose a CCTV storage space securing model using YOLO v3. CCTV is installed and operated in various parts of society for disasters, disasters and safety such as crime prevention, fire prevention, and monitoring, and the number of CCTV is increasing and the quality of the video quality is improving. Due to this, as the number and size of image files increase, it is difficult to cope with the existing storage space. In order to solve this problem, we propose a model that detects specific objects in CCTV images using YOLO v3 library and deletes unnecessary frames by saving only the corresponding frames, thereby securing storage space by reducing the size of the image file, and thereby Periodic images can be stored and managed. After applying the proposed model, it was confirmed that the average image file size was reduced by 94.9%, and it was confirmed that the storage period was increased by about 20 times compared to before the application of the proposed model.
IEMEK Journal of Embedded Systems and Applications
/
v.19
no.1
/
pp.47-55
/
2024
We spend a lot of time in indoor space, and the space has a huge impact on our lives. Interior design plays a significant role to make an indoor space attractive and functional. However, it should consider a lot of complex elements such as color, pattern, and material etc. With the increasing demand for interior design, there is a growing need for technologies that analyze these design elements accurately and efficiently. To address this need, this study suggests a deep learning-based design analysis system. The proposed system consists of a semantic segmentation model that classifies spatial components and an image classification model that classifies attributes such as color, pattern, and material from the segmented components. Semantic segmentation model was trained using a dataset of 30000 personal indoor interior images collected for research, and during inference, the model separate the input image pixel into 34 categories. And experiments were conducted with various backbones in order to obtain the optimal performance of the deep learning model for the collected interior dataset. Finally, the model achieved good performance of 89.05% and 0.5768 in terms of accuracy and mean intersection over union (mIoU). In classification part convolutional neural network (CNN) model which has recorded high performance in other image recognition tasks was used. To improve the performance of the classification model we suggests an approach that how to handle data that has data imbalance and vulnerable to light intensity. Using our methods, we achieve satisfactory results in classifying interior design component attributes. In this paper, we propose indoor space design analysis system that automatically analyzes and classifies the attributes of indoor images using a deep learning-based model. This analysis system, used as a core module in the A.I interior recommendation service, can help users pursuing self-interior design to complete their designs more easily and efficiently.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.36
no.3
/
pp.127-134
/
2018
Electric transmission towers are facilities to transport electrical power from a plant to an electrical substation. The towers are connected using power lines that are installed with a proper sag by loosening the cable to lower the tension and to secure the sufficient clearance from the ground or nearby objects. The power line sag may extend over the tolerance due to the weather such as strong winds, temperature changes, and a heavy snowfall. Therefore the periodical mapping of the power lines is required but the poor accessibility to the power lines limit the work because most power lines are placed at the mountain area. In addition, the manual mapping of the power lines is also time-consuming either using the terrestrial surveying or the aerial surveying. Therefore we utilized multiple overlapping images acquired from a low-cost drone to automatically reconstruct the power lines in the object space. Two overlapping images are selected for epipolar image resampling, followed by the line extraction for the resampled images and the redundant images. The extracted lines from the epipolar images are matched together and reconstructed for the power lines primitive that are noisy because of the multiple line matches. They are filtered using the extracted line information from the redundant images for final power lines points. The experiment result showed that the proposed method successfully generated parabolic curves of power lines by interpolating the power lines points though the line extraction and reconstruction were not complete in some part due to the lack of the image contrast.
Computed tomography (CT) images are widely used for the analysis of the temporal evaluation or monitoring of the progression of a disease. The follow-up examinations of CT scan images of the same patient require a 3D registration technique. In this paper, an automatic and robust registration is proposed for the rigid registration of 3D CT images. The proposed method involves two steps. Firstly, the two CT volumes are aligned based on their principal axes, and then, the alignment from the previous step is refined by the optimization of the similarity score of the image's voxel. Normalized cross correlation (NCC) is used as a similarity metric and a downhill simplex method is employed to find out the optimal score. The performance of the algorithm is evaluated on phantom images and knee synthetic CT images. By the extraction of the initial transformation parameters with principal axis of the binary volumes, the searching space to find out the parameters is reduced in the optimization step. Thus, the overall registration time is algorithmically decreased without the deterioration of the accuracy. The preliminary experimental results of the study demonstrate that the proposed method can be applied to rigid registration problems of real patient images.
Journal of the Institute of Convergence Signal Processing
/
v.13
no.3
/
pp.119-129
/
2012
In the medical field, the hardening of tissues is one of important informations used in diagnosis or understanding progress of disease, a quantitative measuring method of hardening is important for objective diagnosis. It has been proposed MRE(Magnetic Resonance Elastography) method that measures an index of hardening, viscoelastic properties in a noninvasive. Because the S/N ratio of MRE images go down when measuring viscoelastic properties from local wavelength and local damping factor of a propagating wave in MRE method, methods using multiple phase MRE images have been examined to decrease the effect of noise. We propose a method measuring viscoelastic properties after Fitting a function for multiple phase MRE images in this research. This proposed method has a advantage to set up arbitrarily the variation rate of a space direction of viscoelastic properties or the spatial resolution of measuring values according to changing of the noise included in images, though it applies viscoelastic wave for multiple phase MRE images. We confirmed the effectiveness of a proposed method by experiment using simulation images and experiment using silicone-gel phantom.
Disease threatens plant growth and recognizing the type of disease is essential to making a remedy. In recent years, deep learning has witnessed a significant improvement for this task, however, a large volume of labeled images is one of the requirements to get decent performance. But annotated images are difficult and expensive to obtain in the agricultural field. Therefore, designing an efficient and effective strategy is one of the challenges in this area with few labeled data. Transfer learning, assuming taking knowledge from a source domain to a target domain, is borrowed to address this issue and observed comparable results. However, current transfer learning strategies can be regarded as a supervised method as it hypothesizes that there are many labeled images in a source domain. In contrast, unsupervised transfer learning, using only images in a source domain, gives more convenience as collecting images is much easier than annotating. In this paper, we leverage unsupervised transfer learning to perform plant disease recognition, by which we achieve a better performance than supervised transfer learning in many cases. Besides, a vision transformer with a bigger model capacity than convolution is utilized to have a better-pretrained feature space. With the vision transformer-based unsupervised transfer learning, we achieve better results than current works in two datasets. Especially, we obtain 97.3% accuracy with only 30 training images for each class in the Plant Village dataset. We hope that our work can encourage the community to pay attention to vision transformer-based unsupervised transfer learning in the agricultural field when with few labeled images.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.