• 제목/요약/키워드: Space Amplification

검색결과 69건 처리시간 0.028초

Improvement of RocksDB Performance via Large-Scale Parameter Analysis and Optimization

  • Jin, Huijun;Choi, Won Gi;Choi, Jonghwan;Sung, Hanseung;Park, Sanghyun
    • Journal of Information Processing Systems
    • /
    • 제18권3호
    • /
    • pp.374-388
    • /
    • 2022
  • Database systems usually have many parameters that must be configured by database administrators and users. RocksDB achieves fast data writing performance using a log-structured merged tree. This database has many parameters associated with write and space amplifications. Write amplification degrades the database performance, and space amplification leads to an increased storage space owing to the storage of unwanted data. Previously, it was proven that significant performance improvements can be achieved by tuning the database parameters. However, tuning the multiple parameters of a database is a laborious task owing to the large number of potential configuration combinations. To address this problem, we selected the important parameters that affect the performance of RocksDB using random forest. We then analyzed the effects of the selected parameters on write and space amplifications using analysis of variance. We used a genetic algorithm to obtain optimized values of the major parameters. The experimental results indicate an insignificant reduction (-5.64%) in the execution time when using these optimized values; however, write amplification, space amplification, and data processing rates improved considerably by 20.65%, 54.50%, and 89.68%, respectively, as compared to the performance when using the default settings.

Single Logarithmic Amplification and Deep Learning-based Fixed-threshold On-off Keying Detection for Free-space Optical Communication

  • Qian-Wen Jing;Yan-Qing Hong
    • Current Optics and Photonics
    • /
    • 제8권3호
    • /
    • pp.239-245
    • /
    • 2024
  • This paper proposes single logarithmic amplification (single-LA) and deep learning (DL)-based fixed-threshold on-off keying (OOK) detection for free-space optical (FSO) communication. Multilevel LAs (MLAs) can be used to mitigate intensity fluctuations in the received OOK signal by their nonlinear gain characteristics; however, it is ineffective in the case of high scintillation, owing to degradation of the OOK signal's extinction ratio. Therefore, a DL technique is applied to realize effective scintillation compensation in single-LA applications. Fully connected (FC) networks and fully connected neural networks (FCNN), which have nonlinear modeling characteristics, are deployed in this work. The performance of the proposed method is evaluated through simulations under various scintillation effects. Simulation results show that the proposed method outperforms the conventional adaptive-threshold-decision, single-LA-based, MLA-based, FC-based, and FCNN-based OOK detection techniques.

Hybridal Method for the Prediction of Wave Instabilities Inherent in High Energy-Density Combustors (1): Modeling of Nonlinear Cavity Acoustics and its Evolution

  • Lee, Gil-Yong;Yoon, Woong-Sup
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권2호
    • /
    • pp.26-32
    • /
    • 2006
  • This paper targets a direct and quantitative prediction of characteristics of unstable waves in a combustion chamber, which employs the governing equations derived in terms of amplification factors of flow variables. A freshly formulated nonlinear acoustic equation is obtained and the analysis of unsteady waves in a rocket engine is attempted. In the present formalism, perturbation method decomposes the variables into time-averaged part that can be obtained easily and accurately and time-varying part which is assumed to be harmonic. Excluding the use of conventional spatially sinusoidal eigenfunctions, a direct numerical solution of wave equation replaces the initial spatial distribution of standing waves and forms the nonlinear space-averaged terms. Amplification factor is also calculated independently by the time rate of changes of fluctuating variables, and is no longer an explicit function for compulsory representation. Employing only the numerical computation, major assumptions inevitably inherent, and in erroneous manner, in up to date analytical methods could be avoided. With two definitions of amplification factor, 1-D stable wave and 3-D unstable wave are examined, and clearly demonstrated the potentiality of a suggested theoretical-numerical method of combustion instability.

An amplify-and-forward relaying scheme based on network coding for Deep space communication

  • Guo, Wangmei;Zhang, Junhua;Feng, Guiguo;Zhu, Kaijian;Zhang, Jixiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권2호
    • /
    • pp.670-683
    • /
    • 2016
  • Network coding, as a new technique to improve the throughput, is studied combined with multi-relay model in this paper to address the challenges of long distance and power limit in deep space communication. First, an amplify-and-forward relaying approach based on analog network coding (AFNC) is proposed in multi-relay network to improve the capacity for deep space communication system, where multiple relays are introduced to overcome the long distance link loss. The design of amplification coefficients is mathematically formulated as the optimization problem of maximizing SNR under sum-power constraint over relays. Then for a dual-hop relay network with a single source, the optimal amplification coefficients are derived when the multiple relays introduce non-coherent noise. Through theoretic analysis and simulation, it is shown that our approach can achieve the maximum transmission rate and perform better over single link transmission for deep space communication.

Seismic behavior investigation of the steel multi-story moment frames with steel plate shear walls

  • Mansouri, Iman;Arabzadeh, Ali;Farzampour, Alireza;Hu, Jong Wan
    • Steel and Composite Structures
    • /
    • 제37권1호
    • /
    • pp.91-98
    • /
    • 2020
  • Steel plate shear walls are recently used as efficient seismic lateral resisting systems. These lateral resistant structures are implemented to provide more strength, stiffness and ductility in limited space areas. In this study, the seismic behavior of the multi-story steel frames with steel plate shear walls are investigated for buildings with 4, 8, 12 and 16 stories using verified computational modeling platforms. Different number of steel moment bays with distinctive lengths are investigated to effectively determine the deflection amplification factor for low-rise and high-rise structures. Results showed that the dissipated energy in moment frames with steel plates are significantly related to the inside panel. It is shown that more than 50% of the dissipated energy under various ground motions is dissipated by the panel itself, and increasing the steel plate length leads to higher energy dissipation capability. The deflection amplification factor is studied in details for various verified parametric cases, and it is concluded that for a typical multi-story moment frame with steel plate shear walls, the amplification factor is 4.93 which is less than the recommended conservative values in the design codes. It is shown that the deflection amplification factor decreases if the height of the building increases, for which the frames with more than six stories would have less recommended deflection amplification factor. In addition, increasing the number of bays or decreasing the steel plate shear wall length leads to a reduction of the deflection amplification factor.

Study of Weak Astrophysical Shock Waves using a PIC Code

  • 권혜원;류동수
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.109.1-109.1
    • /
    • 2011
  • Shock waves are ubiquitous in astrophysical environments. In particular, shocks formed by merger of subclumps, infall of matter and internal flow motion in intracluster media (ICMs) and cluster outskirts are relatively weak with Mach number M ${\lesssim}$ a few. At such weak shocks, it has been believed that the diffusive shock acceleration (DSA) of cosmic rays is rather inefficient. Yet, the presence of nonthermal phenomena, such as radio halos and relics, suggests that contrary to the expectation, DSA as well as magnetic field amplification should operate at weak shocks in cluster environments. We recently initiated a study of weak, collisionless, astrophysical shocks using a PIC(Particle-in-Cell) code. The PIC code describes the motion of electron and ion particles under the electromagnetic field which is represented in grid zones. Here, we present a preliminary work of one-dimensional simulations. We show how shocks are set up as the turbulent electromagnetic field is developed in the shock transition layer, and discuss the implication on DSA and magnetic field amplification.

  • PDF

Structual Design of a Building with High Damping Provided by Deformation Amplification Mechanisms and Tuned Viscous Mass Damper

  • Mizuki Shigematsu;Takaaki Udagawa;Satoru Nagase
    • 국제초고층학회논문집
    • /
    • 제12권3호
    • /
    • pp.215-224
    • /
    • 2023
  • This paper presents the structural design and response control system of the JR MEGURO MARC building, a 70 meters high office building with steel structure located in Tokyo (Figure 1). In order to achieve high earthquake resistance and useable office space, this building integrates a centralized response control system with deformation amplification mechanisms and tuned viscous mass dampers on the lower floor. Moreover, buckling-restrained braces (BRB) are installed on the upper floors to increase the effectiveness of centralized response control system and to reduce damage of the main frames in the event of a major earthquake. It features an efficient centralized response control system by amplifying the deformation of the dampers without creating a soft story.

A Fosmid Cloning Strategy for Detecting the Widest Possible Spectrum of Microbes from the International Space Station Drinking Water System

  • Choi, Sangdun;Chang, Mi Sook;Stuecker, Tara;Chung, Christine;Newcombe, David A.;Venkateswaran, Kasthuri
    • Genomics & Informatics
    • /
    • 제10권4호
    • /
    • pp.249-255
    • /
    • 2012
  • In this study, fosmid cloning strategies were used to assess the microbial populations in water from the International Space Station (ISS) drinking water system (henceforth referred to as Prebiocide and Tank A water samples). The goals of this study were: to compare the sensitivity of the fosmid cloning strategy with that of traditional culture-based and 16S rRNA-based approaches and to detect the widest possible spectrum of microbial populations during the water purification process. Initially, microbes could not be cultivated, and conventional PCR failed to amplify 16S rDNA fragments from these low biomass samples. Therefore, randomly primed rolling-circle amplification was used to amplify any DNA that might be present in the samples, followed by size selection by using pulsed-field gel electrophoresis. The amplified high-molecular- weight DNA from both samples was cloned into fosmid vectors. Several hundred clones were randomly selected for sequencing, followed by Blastn/Blastx searches. Sequences encoding specific genes from Burkholderia, a species abundant in the soil and groundwater, were found in both samples. Bradyrhizobium and Mesorhizobium, which belong to rhizobia, a large community of nitrogen fixers often found in association with plant roots, were present in the Prebiocide samples. Ralstonia, which is prevalent in soils with a high heavy metal content, was detected in the Tank A samples. The detection of many unidentified sequences suggests the presence of potentially novel microbial fingerprints. The bacterial diversity detected in this pilot study using a fosmid vector approach was higher than that detected by conventional 16S rRNA gene sequencing.

국내 지진관측소 부지의 지반증폭특성 연구 (Analysis of Site Amplification Characteristics of Several Seismic Stations Distributed in the Southern Korean Peninsula)

  • 김준경
    • 터널과지하공간
    • /
    • 제16권6호
    • /
    • pp.486-494
    • /
    • 2006
  • 주파수 영역에서 H/V 스펙트럼비를 구하는 방법은 부지 지반증폭함수를 평가할 때 자주 사용되는 방법이다. 이 방법은 Nakamura에 의해 처음으로 제시되었으며 주로 표면파를 이용하였다. 본 논문에서는 H/V 스펙트럼비를 분석한 결과를 이용하여 국내에 분포되어 있는 지진관측소 부지의 지반증폭 특성을 분석하였으며 이를 위해 본진을 포함한 12개의 후쿠오카 지진으로부터 관측된 지반진동 자료가 이용되었다. 분석결과 대부분의 지진관측소의 H/V 스펙트럼비는 저주파수 영역에서는 변화가 거의 없는 지반증폭 특성을 보여주었다. 하지만 고주파수 영역의 H/V 스펙트럼비는 지진관측소에 따라 우세 주파수 및 1개 또는 여러 개의 지역 피크값을 가지고 있는 것과 같이 특징적인 지반증폭 특성을 보여 주었다. 물론 지반증폭 특성 자체도 부지에 대해 중요한 정보를 제고한다는 점에서 중요하지만 관측된 지반진동 자료를 이용하여 지진원 및 지각감쇠 특성 요소를 분석할 경우 결과값의 왜곡을 피하기 위해 지반증폭 특성을 제거할 필요가 있다.