• Title/Summary/Keyword: Sp10

Search Result 6,144, Processing Time 0.036 seconds

Antifungal Activity of Paenibacillus sp. IUB225-08 Against Colletotrichum gloeosporioides (Paenibacillus sp. IUB225-08의 Colletotrichum gloeosporioides에 대한 항균활성)

  • Kim, Hye Young;Lee, Tea Soo
    • The Korean Journal of Mycology
    • /
    • v.40 no.4
    • /
    • pp.258-265
    • /
    • 2012
  • Bacterial strains isolated from diseased red pepper fruits showed inhibitory effect on mycelial growth and spore germination of Colletotrichum gloeosporioides. The bacterium was identified as Paenibacillus sp. based on its physiological, biochemical characteristics and MicroLog analysis and named Paenibacillus sp. IUB225-08. The bacterium showed the highest level of antifungal activity C. gloeosporioides when cultured at $25^{\circ}C$ for 60 hrs in LB broth with initial pH of 7.0. The butanol fraction from culture extract of Paenibacillus sp. IUB225-08 effectively inhibited the mycelial growth and spore germination of C. gloeosporioides than any other agricultural chemicals tested. Pepper fruits and seeds treated with spores of C. gloeosporioides showed symptoms, while those treated with the culture extract and C. gloeosporioides together did not show any symptoms. Therefore, the culture extract of Paenibacillus sp. IUB225-08 have a potential for biocontrol agent of red pepper anthracnose.

Effects of Substance P on the Activities of Immune Cell (면역세포 활성에 대한 Substance P의 영향)

  • Kim, Hyung-Seop;Oh, Kwi-Ok;Lim, Chong-Deuk
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.2
    • /
    • pp.376-395
    • /
    • 1996
  • The neuropeptide substance P(SP) has been recognized to modulate immune systems, with close proximity between peptidergic sensory nerve endings and immune cells. These include the macrophage and neutrophil activation, IL-2 production in T cell, augmentation of Ig synthesis, mast cell degranulation, $PGE_2$ and collagenase secretion in synoviocytes. In this study I examined SP-induced various biological activities such as antimicrobial action, cytokine production, and mast cell degranulation in the presence or absence of other inflammatory cell activators. Antimicrobial studies showed that undifferentiated HL-60 cells were not affected by SP. However, SP significantly enhanced antimicrobial action of TPA-treated or dbcAMP-treated HL-60 cells which had been differentiated into PMN or macrophage/monocyte. I could not find synergistic relationship between SP and LPS in parallel experiments of the above. SP did not induce IL-l production from murine macrophage cell line RAW264.7 whether costimulated with LPS or not. Mast cell degranulation was occured only when stimulated with high dose ($10^{-5}M$) of SP and the degree of this activation was slightly reduced by simultaneous application of $MIP-1{\alpha}$. In addition, CGRP which is known to be a common coexisting neuropeptide with SP within specific fibers did not augment the function of SP on mast cell degranulation. These results suggest that immunoregulatory activities of SP could be mediated through direct upregulation of various functions of immune cells and also upregulation of responsiveness of immune cells to other immune activators.

  • PDF

Study on the Isolation and Characterization of Cellulose degrading Microorganism from Cocopeat (코코피트로부터 분리한 섬유소분해세균의 분리, 동정 및 특징에 관한 연구)

  • Chang, Jea-Eun;Kim, Jin-Whan;Kim, Young-Jun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.4
    • /
    • pp.84-89
    • /
    • 2011
  • Cellulose-degrading bacteria were isolated and identified from cocopeat which has a good quality as a bulking agent in composting. Various bacteria from different sourecs of cocopeat were detected on CMC agar media, and these were found to be Burkholderi2a sp., Bacillu subtilis, Sphingomonas sp., Rhodotorula sp. & Pseudomonas sp. etc. Among these, four bacteria were further selected and analyzed for their biochemical characteristics and CMCase activities. CMCase activities of four bacteria, P. aeruginosa, P. stutzeri, B. subtilis, and P. luteola were found to be 83%, 40%, 8%, 6%, respectively, compared with that of the standard strain Cellulomonas sp.

Synthesis of Styrenated Phenol Alkoxylate from Styrenated Phenol with Ethylene Carbonate over KOH/La2O3 Catalyst (KOH/La2O3 촉매상에서 Styrenated Phenol과 Ethylene Carbonate의 반응으로부터 Styrenated Phenol Alkoxylate의 합성)

  • Lee, Seungmin;Son, Seokhwan;Jung, Sunghun;Kwak, Wonbong;Shin, Eun Ju;Ahn, Hogeun;Chung, Minchul
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.62-66
    • /
    • 2018
  • Styrenated phenol alkoxylates (SP-A) were prepared from styrenated phenol (SP) and ethylene oxide (EO) under a homogeneous base catalyst. However, to use EO that is difficult to handle, a high-pressure reaction device capable of controlling the reaction process should be used. Additionally, when a homogeneous base catalyst is used, a neutralization process is required to remove residual bases after the reaction, and it is also difficult to separate the catalyst and the product. Therefore, in this study, we report the results of SP-A prepared from the reaction of SP and EC using only heterogeneous base catalysts. The heterogeneous base catalyst was obtained by supporting KOH on $La_2O_3$ and calcintion. Using EC instead of EO, it was possible to produce SP-A under the atmospheric rather than high-pressure reaction condition. Average molecular weights of synthesized SP-A varied greatly depending on reaction conditions. The average molecular weight of SP-A prepared using the $KOH/La_2O_3$ catalyst could be controlled arbitrarily by controlling the reaction temperature and added catalyst and EC amounts.

Diversity and Plant Growth-Promotion of Endophytic Fungi Isolated from the Roots of Plants in Dokdo Islands (독도의 자생식물 뿌리에서 분리한 내생진균의 다양성과 생장촉진활성)

  • You, Young-Hyun;Yoon, Hyeok-Jun;Lee, Gil-Seong;Woo, Ju-Ri;Rim, Soon-Ok;Shin, Jae-Ho;Lee, In-Jung;Choo, Yeon-Sik;Kim, Jong-Guk
    • Journal of Life Science
    • /
    • v.21 no.7
    • /
    • pp.992-996
    • /
    • 2011
  • Endophytic fungi were isolated from the roots of plants growing naturally on the island of Dokdo. Plant samples, such as Miscanthus sinensis, Achyranthus japonica and Echinochloa crusgali were isolated from Dongdo, and those such as Honkenya peploides and Artemsia koidzumii were isolated from Seodo. Twenty one strains of endophytic fungi were isolated from these plants. To identify the strains, PCR (polymerase chain reaction) amplification of the partial ITS (Internal Transcribed Spacer) regions was done with universal primers ITS-1 and ITS-4 to determine the nucleotide sequence of the ITS regions. Of the strains isolated from Miscanthus sinensis, 75% were Penicillium sp. and 25% were Aspergillus sp. Fifty five percent of strains isolated from Achyranthus japonica were Penicillium sp., 30% were Aspergillus sp. and 15% were Zygorhynchus sp. Strains isolated from Echinochloa crusgali were Penicillium sp. (50%), Aspergillus sp. (12%), Giberella sp. (13%), Talaromyces sp. (9%) and Umbelopsis sp. (8%). Of the strains isolated from Honkenya peploides, 76% were Penicillium sp. and 24% were Pestalotiopsis sp. Strains isolated from Artemisia koidzumii were Penicillium sp. (81%) and Mucor sp. (19%). As a result of bioassay, Ec-3-1 strain isolated from Echinochloa crusgalli showed plant growth-promotion activity. Of all the endophytic fungi isolated, Penicillium sp. was the most abundantly distributed fungal strain in all plants used in this study.

The Importance of Dissolved Organic Nutrients on the Interspecific Competition between the Harmful Dinoflagellate Cochlodinium polykrikoides and the Diatom Skeletonema sp. (유해 와편모조류 Cochlodinium polykrikoides와 규조류 Skeletonema sp.의 종간경쟁에서 용존 유기 영양염의 중요성)

  • Kwon, Hyeong Kyu;Kim, Hyun Jung;Yang, Han-Soeb;Oh, Seok Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.4
    • /
    • pp.232-242
    • /
    • 2014
  • We investigated the interspecific competition between the harmful dinoflagellate Cochlodinium polykrikoides and diatom Skeletonema sp. based on the utilization and uptake of dissolved organic nutrients. C. polykrikoides and S. costatum were able to grow using dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) as well as dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP). This result indicates that the utilization of dissolved organic nutrients may play a role in surviving strategy in the DIN or DIP-limited environments. The half-saturation constants (Ks) of urea and glycerophosphate (glycero-P) calculated from uptake kinetics experiment of C. polykrikoides was lower than those of Skeletonema sp. This result indicates that Skeletonema sp. have higher affinity for dissolved organic nutrients, such as urea and glycero-P, than C. polykrikoides. Although Skeletonema sp. have higher affinity of dissolved organic nutrients, C. polykrikoides could effectively uptake for urea and glycero-P at sub-saturating nutrient concentrations (${\alpha}$ (${\rho}_{max}/Ks$) of C. polykrikoides was higher than Skeletonema sp.. Therefore, C. polykrikoides by utilization and effectively uptake of dissolved organic nutrients under monoculture may have an advantageous position in the interspecific competition with Skeletonema sp. in the low nutrient environments.

Characterization of Heavy Metal Tolerant and Plant Growth-Promoting Rhizobacteria Isolated from Soil Contaminated with Heavy Metal and Diesel (중금속 및 디젤 오염 토양에서 분리한 중금속 내성 식물 생장 촉진 근권세균의 특성)

  • Lee, Soo Yeon;Lee, Yun-Yeong;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.413-424
    • /
    • 2021
  • In order to enhance rhizoremediation performance, which remediates contaminated soils using the interactions between plants and microorganisms in rhizosphere, it is required to develop effective microbial resources that simultaneously degrade contaminants and promote plant growth. In this study, heavy metal-resistant rhizobacteria, which had been cultivated in soils contaminated with heavy metals (copper, cadmium, and lead) and diesel were isolated from rhizospheres of maize and tall fescue. After that, the isolates were qualitatively evaluated for plant growth promoting (PGP) activities, heavy metal tolerance, and diesel degradability. As a result, six strains with heavy metal tolerance, PGP activities, and diesel degradability were isolated. Strains CuM5 and CdM2 were isolated from the rhizosphere soils of maize, and were identified as belonging to the genus Cupriavidus. From the rhizosphere soils of tall fescue, strains CuT6, CdT2, CdT5, and PbT3 were isolated and were identified as Fulvimonas soli, Cupriavidus sp., Novosphingobium sp., and Bacillus sp., respectively. Cupriavidus sp. CuM5 and CdM2 showed a low heavy metal tolerance and diesel degradability, but exhibited an excellent PGP ability. Among the six isolates, Cupriavidus sp. CdT2 and Bacillus sp. PbT3 showed the best diesel degradability. Additionally, Bacillus sp. PbT3 also exhibited excellent heavy metal tolerance and PGP abilities. These results indicate that the isolates can be used as promising microbial resources to promote plant growth and restore soils with contaminated heavy metals and diesel.

Isolation, identification, and probiotic characteristics of Bacillus strains affecting the biogenic amine content in fermented soybean paste (발효 된장의 바이오제닉 아민 함량에 영향을 미치는 바실러스균의 분리 동정 및 프로바이오틱 특성)

  • Lim, Eun-Seo
    • Korean Journal of Microbiology
    • /
    • v.55 no.2
    • /
    • pp.131-142
    • /
    • 2019
  • The primary objective of this study was to determine the content of biogenic amines in Korean traditional fermented soybean pastes (doenjang) and to isolate potential probiotic Bacillus sp. with the ability to inhibit biogenic amines accumulation. There were significant differences in the bacterial cell counts, pH value, titratable acidity, salinity, and biogenic amine content between the samples. Among Bacillus strains isolated from doenjang, Bacillus (B.) licheniformis DB102, B. subtilis DB203, B. stearothermophilus DB206, Bacillus sp. DB209, Bacillus sp. DB310, B. coagulans DB311, B. cereus DB313, B. amyloliquefaciens DB714, Bacillus sp. DB917, B. cereus DB 915, B. subtilis DB1020, and Bacillus sp. DB1022 were found to be able to produce biogenic amines. On the other hand, biogenic amine-degrading strains were identified as Bacillus sp. DB403, Bacillus sp. DB407, B. subtilis DB517, B. licheniformis DB612, and B. subtilis DB821. In particular, Bacillus sp. DB407 and B. subtilis DB821 showed probiotic properties including tolerance to artificial digestive juices, adherence to intestinal epithelial cells, resistance to antibiotics, and antibacterial activity against biogenic amine-producing strains. In conclusion, the two probiotic Bacillus strains may be considered as the suitable starter for manufacture of fermented soybean foods with low biogenic amines content.

Studies on the Availability of Marine Bacteria and the Environmental Factors for the Mass Culture of the High Quality of Rotifer and Artemia 1. Change of Fatty Acid and Amino Aicd Composition During Cultivation of Rotifer, Brachionus plicatilis by Marine Bacteria Erythrobacter sp. $S\;\pi-I$ (고품질의 Rotifer와 Artemia의 생산을 위한 해양세균 이용과 대량생산에 따른 환경인자에 관한 연구 1. Erythrobacter sp. $S\;\pi-I$에 의한 Rotifer, Brachionus plicatilis의 배양시 지방산과 아미노산 조성의 변화)

  • LEE Won-Jae;PARK You-Soo;PARK Young-Tae;KIM Sung-Jae;KIM Kwang-Yang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.3
    • /
    • pp.319-328
    • /
    • 1997
  • To develop a beneficial microbial feed for the cultivation of rotifer, Brachionus plicatilis, an aerobic photosynthetic bacterium, Erythrobacter sp. $S\;\pi-I$ was isolated from marine structure at Haeundae beach in Pusan, Korea. Feeding effects of Erythrobacter sp. $S\;\pi-I$ on the growth of rotifer were analyzed comparing to other feeds such as PSB (purple nonsulfur bacteria), Chlorella sp. and baker's yeast. Erythrobacter sp. $S\;\pi-I$ contained more linoleic acid $(C_{18:3\omega3})$ and oleic acid $(C_{18:1\omega9})$ and amino acids than PSB (purple nonsulfur bacteria), Chlorella sp. and baker's yeast. The rotifer fed on Erythrobacter sp. $S\;\pi-I$ showed better effects than those fed on other feeds in the individual growth, size and weight. Also, the rotifer especially contained more eicosapentaenoic acid $(C_{20:5\omega3})$ and docosahexaenoic acid $(C_{22:6\omega3})$ in case of Erythrobacter sp. $S\;\pi-I$ feeding than the other feeds. In case of the feed of PSB and baker's yeast docosahexaenoic acid $(C_{22:6\omega3})$ did not show. In amino acid analysis, the rotifer fed on Erthrobacter sp, $S\;\pi-I$ showed more amino acid content comparing to those fed on other diets. Especially, arginine, isoleucine, histidine, lysine, methionine, phenylalanine, threonine, which are essential amino acid for fish growth, showed high contents. These results suggested that the aerobic photosynthetic bacterium, Erythrobacter sp. $S\;\pi-I$ would be a beneficial microbial teed for the cultivation of rotifer.

  • PDF

Selection of Beneficial Microbial Agents for Control of Fungal Diseases in the Phyllosphere of Cucumber Plant (오이 지상부의 주요 곰팡이 병해의 생물적 방제용 유용미생물의 선발)

  • Lee, Sang-Yeob;Lee, Young-Kee;Park, Kyung-Seok;Kim, Yong-Ki
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.4
    • /
    • pp.326-331
    • /
    • 2010
  • Bacillus subtilis B29, B. subtilis M10 and Streptomyces sp. CC19 obtained from phyllosphere of cucumber plants were selected for biological control of fungal air-borne diseases. For the downy mildew, diseased area of B. subtilis B29, B. subtilis M10 and Streptomyces sp. CC19 showed 0.5%, 20.2% and 42.0%, but that of control was 82.0% respectively, in cucumber seedling test. Incidence of powdery mildew by once application of B. subtilis B29, B. subtilis M10 and Streptomyces sp. CC19 was 2.8%, 3.6% and 12.3%, respectively, whereas that of control was 65.6%. On the gray mold, diseased area of B. subtilis B29, B. subtilis M10 and Streptomyces sp. CC19 was 8.0%, 30.8% and 5.2%, respectively, compared to 81.2% for the control. Therefore, B. subtilis B29 could be a prospective antagonist for biological control of powdery mildew, downy mildew and gray mold of cucumber plant.