• Title/Summary/Keyword: Soybean peptides

Search Result 59, Processing Time 0.029 seconds

Influence of Organic, Inorganic Nitrogen Sources and Amino Acids on the Biosynthesis of Coenzyme $Q_{10}$ by Agrobacterium tumefaciens Mutant (Agrobacterium tumefaciens 변이주에 의한 Coenzyme $Q_{10}$ 생합성시 유기, 무기질소원과 아미노산의 영향)

  • Kim, Jeong-Keun;Won, Yong-Bae;Lee, Kang-Moon;Koo, Yoon-Mo
    • KSBB Journal
    • /
    • v.24 no.1
    • /
    • pp.75-79
    • /
    • 2009
  • The effect of inorganic, organic nitrogen sources and amino acids on the coenzyme $Q_{10}$ production and coenzyme $Q_{10}$ component ratio was investigated. Among the nine organic nitrogen sources, CSP showed a remarkable enhancing effect on the production of coenzyme $Q_{10}$. But this enhancement was not observed in medium containing Bacto peptone, tryptone, casamino acid and soybean meal. These differences on the production of coenzyme $Q_{10}$ may be due to differences in kinds and amounts of component amino acids and peptides in the various organic nitrogen sources tested. In the addition of inorganic nitrogens, only $(NH_4)_2SO_4$ increase the coenzyme $Q_{10}$ production by 2.0 times compare to the control group. The addition of L-tyrosine to the medium containing Bacto tryptone, was also determined to be crucial for the coenzyme $Q_{10}$ production. But phenylalanin and tryptophan, other aromatic amino acids, had no stimulatory effect on the coenzyme $Q_{10}$ production. These results show that the production and components ratio of coenzyme $Q_{10}$ was greatly affected by the kinds and the concentration of inorganic, organic nitrogen sources as well as amino acids.

Ethanol Extracts of Chungkookjang Stimulate the Proliferation and Migration of Human Umbilical Vascular Endothelial Cells (청국장 에탄올 추출물의 혈관내피세포 증식과 이동 촉진효과)

  • Hwang, Jae Sung;Sung, Dae Il;Lee, Whan Myung;Chung, Young Shin;Kim, Han Bok
    • Korean Journal of Microbiology
    • /
    • v.50 no.3
    • /
    • pp.223-226
    • /
    • 2014
  • In the fermented soybean product known as "chungkookjang", diverse bioactive compounds are produced when the soybean proteins are degraded during fermentation. Vascular endothelial cells (EC) are crucial in vein function and the formation of new vessels. A treatment to stimulate formation of new blood vessels is needed in cerebrovascular diseases that lead to ischaemic stroke and heart attack, as well as for diabetic ulcers. VEGF (Vascular Endothelial Growth Factor) simulates EC formation. The effect of Chungkookjang ethanol extract (CEE) on the proliferation of EC was studied. CEE (100, $1000{\mu}g/ml$) and boiled CEE were as effective as VEGF (10 ng/ml) for the proliferation of human umbilical vascular endothelial cells (HUVEC). The effect of CEE on the migration of HUVEC was investigated using sprout analysis. CEE ($100{\mu}g/ml$) was as effective as VEGF (10 ng/ml) for the migration of HUVEC. Isolation of specific peptides influencing the growth and migration of EC is needed.

Fermentation of Black-soybean Chungkookjang Using Bacillus licheniformis B1 (Bacillus licheniformis B1을 이용한 검은콩 청국장 발효)

  • Hwang, Jae-Sung;Kim, Jae-Young;Sung, Dae-Il;Yi, Yong-Sub;Kim, Han-Bok
    • Korean Journal of Microbiology
    • /
    • v.48 no.3
    • /
    • pp.216-219
    • /
    • 2012
  • Chungkookjang, fermented soybean, is high in microorganism, enzymes, daidzein, and peptides. Using yellow, black, Seoritae, small-black soybeans and Bacillus licheniformis B1, each Chungkookjang (YC, BC, SC, SBC) was prepared, and their fermentation patterns were compared. Changes of pH and browning material formation were taken as an indicative of fermentation. YC had a high pH increase at an early stage of fermentation, and a low change at a late stage. BC, SC, and SBC showed different patterns with a low pH increase at an early stage and a high pH increase at a late stage. Formation rate of browning material was fastest in YC and slow in the rest of BC, SC, and SMC. SC showed the highest value of browning material formation 1 d after fermentation. Anthocyanin in black soybeans seems to suppress the growth of bacteria at an early stage of fermentation. When anti-inflammatory daidzein contents were analyzed by HPLC, BC, SC, SBC showed higher values than YC. It was demonstrated that black soybeans can be fermented with B. licheniformis B1.

Optimization of γ-Aminobutyric Acid (GABA) Production Using Immobilized Lactobacillus plantarum K154 in Submerged Culture of Ceriporia lacerata (Ceriporia lacerata 배양액과 고정화 Lactobacillus plantarum K154를 이용한 감마아미노뷰티르산 생산 최적화)

  • Lee, Eun-Ji;Lee, Sam-Pin
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.438-445
    • /
    • 2015
  • The production of GABA was optimized by co-cultivation of immobilized Lactobacillus plantarum K154 (ILK) with Ceriporia lacerata cultures. The mycelial culture of C. lacerata was performed in a defined medium containing 3% glucose, 3% soybean flour, and 0.15% $MgSO_4$ in a submerged condition for 7 days at $25^{\circ}C$, resulting in the production of 29.7 g/L mycelia, 3.1 g/L exopolysaccharides, 2% (w/w) ${\beta}$-glucan, 68.96 unit/mL protease, and 10.37 unit/mL ${\alpha}$-amylase. ILK in C. lacerata culture showed viable cell counts of $3.13{\time}10^9CFU/mL$ for immobilized cells and $1.48{\time}10^8CFU/mL$ for free cells after 1 day. GABA production in the free and immobilized cells was 9.96 mg/mL and 6.30 mg/mL, respectively, after 7 days. A recycling test of ILK in the co-fermentation was consequently performed five times at $30^{\circ}C$ for 15 days, resulting in the highest production of GABA. GABA could also be efficiently overproduced by co-cultivation with the produced polysaccharides, ${\beta}$-glucan, peptides, and probiotics.

Studies on the Development of a Thrombolytic Agent from Korean Snake Venom II. Characterization and Thrombolytic Activity of a Pretense from the Venom of a Protease from the Venom of A. bromhoffi brevicaudus (한국 독사독으로부터의 혈전 용해제 개발에 관한 연구 II. 살모사(A. bromhoffi brevicaudus) 사독 Protease의 특성과 혈전 용해능에 관한 연구)

  • Kim, Byoung-Jae;Lee, Mun-Han;Rim, Jong-Seop;Lee, Hang;Lee, Hye-Suk;Kim, Jong-Ho;Chai, Chang-Su
    • Biomolecules & Therapeutics
    • /
    • v.3 no.2
    • /
    • pp.165-170
    • /
    • 1995
  • The biochemical properties of the fibrinolytic protease of 50,800 Da isolated from the venom of Kgdistrodon blomhoffi brevicaudus were characterized. The enzyme hydrolyzed the carboxyl side of arginine in the synthetic chromogenic peptides, N-Benzoyl-Phe-Val-Arg-pNA and N-p-Tosyl-Gly-Pro-Arg-pNA, and the enzyme activity was inhibited by phenylmethylsulfonylfluoride indicating that the enzyme belongs to the serine protease family. The pretense showed maximum activity at pH 7.5 and inhibited by ZnCl$_2$, CuSO$_4$, but not by soybean trypsin inhibitor, pepstatin A, 2-mercaptoethanol and EDTA. The fm value determined with N-p-Tosyl-Gly-Pro-Arg-pNA was 0.2 mM. The thrombolytic activity of the purified enzyme was evaluated by platelet aggregation test in rabbits. While the platelet count ratio in blood of the rabbits injected with thrombin alone declined from 1.0 to 0.6 within 7 min and maintained around 0.6 for 24 hours thereafter, the ratio rapidly recovered from around 0.6 to 0.8 in 1 hr, to 1.0 in 24 hrs when the rabbits were sequentially treated with thrombin and the purified enzyme. The result showed that the serine protease from A. blomhoffi brevicoudus of 50,800 Da had a thrombolytic activity in vivo and the enzyme might be developed as a therapuetic agent for the treatment of thrombic disease.

  • PDF

Physicochemical Properties of Isolated Peptides from Hwangtae (yellowish dried pollack) Protein Hydrolysate

  • Cho, San-Soon;Lee, Hyo-Ku;Han, Chi-Won;Seong, Eun-Soo;Yu, Chang-Yeon;Kim, Myong-Jo;Kim, Na-Young;Kang, Wie-Soo;Ko, Sang-Hoon;Son, Eun-Hwa;Choung, Myoung-Gun;Lim, Jung-Dae
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.3
    • /
    • pp.204-211
    • /
    • 2008
  • Fish protein hydrolysates (FPHs) with different degrees of hydrolysis by treatment with alcalase, pronase, flavourzyme and trypsin and isolated peptide were prepared from Hwangtae (yellow dried pollack, Theragra chalcogramma). Hwangtae protein hydrolysate was fractionated according to the molecular weight into six major types of APO1 (1.3 kDa), APO2 (1 kDa), APO3 (<1 kDa), APACE (<1 kDa), APG1 (70 kDa) and APG2 (70 kDa) isolated from the hydrolysate using consecutive chromatographic methods. Soluble peptide were produced from Hwangtae and evaluated for their nutritional and functional properties. Some functional properties of FPHs were assessed and compared with those of egg albumin or the soybean protein. APO2 had the highest nitrogen solubility value (94.2%), emulsion capacity and emulsion stability of the Alaska Pollack peptide ranged from 12.4 to 39.5 (mL of oil per 200 mg of protein) and 44.0% to 77.5%, respectively. Highest and lowest fat adsorption values were observed for APG1 (9.9 mL of oil per gram of protein) and APO3 (3.8 mL of oil per gram of protein), respectively.

Effects of Level and Degradability of Dietary Protein on Ruminal Fermentation and Concentrations of Soluble Non-ammonia Nitrogen in Ruminal and Omasal Digesta of Hanwoo Steers

  • Oh, Young-Kyoon;Kim, Jeong-Hoon;Kim, Kyoung-Hoon;Choi, Chang-Won;Kang, Su-Won;Nam, In-Sik;Kim, Do-Hyung;Song, Man-Kang;Kim, Chang-Won;Park, Keun-Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.3
    • /
    • pp.392-403
    • /
    • 2008
  • Four ruminally fistulated Hanwoo steers were used to determine the effects of level and degradability of dietary protein on ruminal fermentation, blood metabolites and concentration of soluble non-ammonia nitrogen (SNAN) in ruminal (RD) and omasal digesta (OD). Experiments were conducted in a $4{\times}4$ Latin square design with a $2{\times}2$ factorial arrangement of treatments. Factors were protein supplements with two ruminal crude protein (CP) degradabilities, corn gluten meal (CGM) that was low in degradability (rumen-degraded protein (RDP), 23.4% CP) or soybean meal (SBM) that was high in degradability (RDP, 62.1% CP), and two feeding levels of CP (12.2 or 15.9% dry matter). Ruminal fermentation rates and plasma metabolite concentrations were determined from the RD collected at 2-h intervals and from the blood taken by jugular puncture, respectively. The SNAN fractions (free amino acid, peptide and soluble protein) in RD and OD collected at 2-h intervals were assessed by ninhydrin assay. Mean ruminal ammonia concentrations were 40.5, 74.8, 103.4 and 127.0 mg/L for low CGM, high CGM, low SBM and high SBM, respectively, with statistically significant differences (p<0.01 for CP level and p<0.001 for CP degradability). Blood urea nitrogen concentrations were increased by high CP level (p<0.001) but unaffected by CP degradability. There was a significant (p<0.05) interaction between level and degradability of CP on blood albumin concentrations. Albumin was decreased to a greater extent by increasing degradability of low CP diets (0.26 g/dl) compared with high CP diets (0.02 g/dl). Concentrations of each SNAN fraction in RD (p<0.01) and OD (p<0.05) for high CP diets were higher than those for low CP diets, except for peptides but concentrations of the sum of peptide and free amino acid in RD and OD were significantly higher (p<0.05) for high CP diets than for low CP diets. Soybean meal diets increased free amino acid and peptide concentrations in both RD (p<0.01) and OD (p<0.05) compared to CGM diets. High level and greater degradability of CP increased (p<0.001) mean concentrations of total SNAN in RD and OD. These results suggest that RDP contents, increased by higher level and degradability of dietary protein, may increase release of free amino acids, peptides and soluble proteins in the rumen and omasum from ruminal degradation and solubilization of dietary proteins. Because SNAN in OD indicates the terminal product of ruminal metabolism, increasing CP level and degradability appears to increase the amount of intestine-available nitrogen in the liquid phase.

Bacillus licheniformis SSA3-2M1 이 생산하는 Proteinases

  • 장영채;이경형;김성영;조윤래;김종규
    • Korean Journal of Microbiology
    • /
    • v.30 no.4
    • /
    • pp.239-245
    • /
    • 1992
  • Buci1llr.s 11c~h~n~1rnSiSi.As 3-2MI which is responsible for the special taste of traditionalKorean soy sause produced two kinds of proteinase. The activity of the proteinasc I washigher about two fold than that of proteinase 11. The optimai, reaction pH of proteinaseI and I1 wcre found to be 7-1 1.5 and 7-9. respectively. Proteinase I1 was more stable andactive than proteinase I at pH ranges around 3 to 5. The optimal te~tlperature of proteinaseI and I1 were 502. The temperature stabilitl of proteinase I1 was Inore stable thanproteinase 1 at temperature range around 30-quot;~A. ctivities of proteinase I and I1 graduallydeclined above $30^{\circ}$C and 45C. respectively. Proteinasc 1 was more active than proteinaseI1 at salt concentration range around 25-3500. The K,,, values of casein and soy proteinfor proteinase I were 6.89 mglml and 3.98 mglml. In case of proteinase 11. they were 9.00mgiml anti 11.44 111g/ml. respectively. The activity of the crudc enzyme was increased by1 rnM Pb(CH3COO). but was decreased by 5 n1M and 10 rnM of HgS04 and ZnS04. Thetwo proteinases produced amino acids and peptides from the soybean protein. The peptideswere digested into amino acids. Both protcinases were found to be the main enzymes thatproduced amino acids which make the main taste of traditional Korean soy sauce.al Korean soy sauce.

  • PDF

Predicting the Nutritional Value of Seafood Proteins as Measured by Newer In Vitro Model 2. C-PER and DC-PER of Marine Crustacea (수산식품 단백질 품질평가를 위한 새로운 모델 설정 2. 해산 갑각류의 C-PER 및 DC-PER)

  • RYU Hong-Soo;LEE Keun-Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.3
    • /
    • pp.219-226
    • /
    • 1986
  • To confirm the application of a newer in vitro assays to determining the nutritional value of marine crustaceans (mainly shrimps and crabs), which have been considered to be highly nutritive depending on their levels of the essential amino acids and digestibility, their C-PERs and DC-PERs were determined and studied the factors influencing their in vitro results. Four species of seawater shrimps and 2 species of seawater crabs were used in this experiment. The in vitro digestibilities showed $83{\sim}86\%$ for raw shrimps and the trypsin indigestibile substrate content (TIS) was ranged from 1.32 to 3.33 mg/g solid expressed quantitatively as mg of purified soybean trypsin inhibitor. The smaller size of shrimps revealed a greater in vitro digestibility and a lower contents of TIS. It was noted that the in vitro digestibility of raw blue crab meat was around $85\%$ while boiled tenner crab meat showed $86\%$ or above, and the leg meat had the greatest in vitro digestibility in the various parts of crab meats. The poor in vitro digestibilities for shrimp's and crab's meat, compared with that of the other seafoods as noted in previous reports, suggest that the drop in pH, due to the change in their freshness during harvesting and frozen storage, resulted in underestimating their digestibilities using four-enzyme digestion technique. The lysine contents in all samples were higher than that of ANRC casein but they contained a slightly lower sulfur-containing amino acids than those in ANRC casein. But the other EAA, such as valine, tyrosine and phenylalanine, were found to be a half as little as that in casein and played a key-factor in calculation of C-PER or DC-PER. It was observed that the value of C-PER and DC-PER for all samples ranged from 2.1 to 2.4, and the predicted digestibilities showed $90\%$ or above in all samples. It was a different results from the fact that the animal proteins bear a higher values and predicted digestibilities than those of C-PER values. The lack of correlation between C-PER and DC-PER values is attributable to the fact that the lower content of valine, tyrosine and phenylalanine, and drop in pH owing to the changes of freshness in marine crustacea proteins. Therefore, if a newer in vitro digestion technique-which are taken into account the pH drop before digestion, TIS content and released free amino acids and/or peptides-developed, C-PER assays can provide more advantages in assessing the protein nutritional value of marine crustacea than any other in vitro assays.

  • PDF