• Title/Summary/Keyword: Soybean Flowering

Search Result 167, Processing Time 0.024 seconds

Effect of Amount and Time of Nitrogen Top-dressing at Seeding Dates on Growth and Grain Yield of Soybeans (대두(大豆)의 파종기별(播種期別) 질소추비량(窒素追肥量)과 추비시기(追肥時期)가 생육(生育) 및 수량(收量)에 미치는 영향(影響))

  • Lee, Chung Yeol;Choi, Chang Yeol
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.1
    • /
    • pp.1-15
    • /
    • 1987
  • This experiment was conducted to investigate the effect of nitrogen top-dressing and Jangyeopkong was planted under two different seeding time (single cropping-May 15, after barley cropping-June 18), four levels of nitrogen top-dressing (0, 3, 6, 9 kg/10a) and two times of nitrogen top-dressing (Hilling time, Flowering Time). The results obtained are summarized as follow: 1. The days to flowering and maturity were delayed a day longer in hilling times than flowering times of nitrogen top-dressing. 2. The number of nodes of main stem and length of internodes didn't show significance among treatments. But, the number of nodes of branches was much higher when the soybean was planted on May 15, and were higher hilling time than flowering time as the amount of nitrogen top-dressing increased. Especially, the number of nodes of branches was high when 6kg of nitrogen was applied during hilling time. 3. The fresh and dry weight of stem and leaves at 10, 25 and 40 days after flowering were increased by increasing the amount of nitrogen top-dressing. More apparent effect of nitrogen was attained high significant when nitrogen was applied at the time of hilling rather than flowering time. 4. The number and fresh weight of nodule, and dry weight were apparently decreased after barley and were decreased according to the increasing the amount of nitrogen top dressing. The degrees of decreasing was more apparent in the hilling time than in the flowering time. 5. The number of pods per plant, and number and weight of grain per plant were higher when the soybean was planted on May 15, the amount of top dressing increased and hilling time rather than flowering time. Especially, yield component were highest when 6kg of nitrogen was applied during hilling time. Also, the grain yield per 10a showed high significance among treatment, and were high when 6kg of nitrogen was applied during hilling time.

  • PDF

Studies on the Screening for Shade Tolerance in Soybean (대두내륭성계통의 선발에 관한 연구)

  • Kwon, S.H.;Won. J.L.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.24 no.3
    • /
    • pp.51-57
    • /
    • 1979
  • In order to screen the shade tolerance soybean lines, several important agronomic characters were studied after shade treatment at various growth stages. A severe influence of light reduction on agronomic characters found during the late flowering to pod filling period, and the response to shading was significantly different among the lines tested. Examining of pods number per plant after shade treatment during pod filling stage would be most effective method in the screening for shade tolerance soybean lines.

  • PDF

Drought Resistance of Several Soybean Cultivars (주요대두품종(主要大豆品種)의 내건성(耐乾性)에 관(關)한 연구(硏究))

  • Choi, Chang Yeol
    • Korean Journal of Agricultural Science
    • /
    • v.15 no.1
    • /
    • pp.36-46
    • /
    • 1988
  • Twelve soybean cultivars were cultivated in the 1/2,000a. Wagner pots with irrigation and without irrigation for 30 days after flowering, and the differences of plant growth and bean yield among cultivars were compared. And to investigate the varietal differences in the rate of photosynthesis under different relative humidity, 6soybean cultivars were cultivated in 1/2,000a. Wagner pot and the rate of photosynthesis of each soybean cultivar at flowering time was measured under the relative humidity of 80, 70, 60, 50 and 40%. The results obtained are summarized as follows; 1. The days to maturity of the soybean cultivars were shortened by non-irrigation treatment. The response of the maturing dates to non-irrigation was significantly different among the soybean cultivars. The days for maturing of Paldal, Danyeob and Eundaedu were delayed 2 days but those of Jangbaek and Tamahomare were delayed about 7 to 8 days under non-irrigation treatment. 2. The stem length, stem diameter, number of nodes of the mainstem, number of branches and number of branch nodes of all soybean cultivars were decreased by non-irrigation treatment. The number of branches and the number of branch nodes were especially severely influenced by non-irrigation treatment. 3. The number of pods per plant and the number of perfect pods was significantly reduced by non-irrigation treatment but the number of imperfect pods was increased. The non-irrigation treatment reduced the number of pods per plant by 58.0% and the ratio of the number of the perfect pods per plant by 46.6% relative to the ordinary cultivation with irrigation. 4. The grain yield of all cultivars was significantly reduced by the non-irrigation treatment, and average grain yield of soybean cultivars cultivated under non-irrigation treatment was 35.9% of that of soybean cultivars cultivated with irrigation. The influence of non-irrigation treatment was lowest in Paldal and significantly high in Tamahomare and Jangbaek. 5. The rate of photosynthesis of soybean leaves was significantly different among cultivars and was also influenced by relative humidity. Ratio of the photosynthetic amount of soybean leaves at 40% RH to the maximum photosynthesis at optimal humidity was 97.2% in Paldal, 96.4% in Danyeob and 88.8% in Baekun. 6. At 40% relative air humidity, highly significant correlations were found among the photosynthesis rate, the amount of transpiration and the respiration rate.

  • PDF

Growth Characteristics and Yield Potentials of Soybeans in Upland and Paddy Field (전과 답에서의 콩 생육특성과 수량성)

  • 황영현;박상구
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.4
    • /
    • pp.336-342
    • /
    • 1993
  • To obtain the basic information necessary for the development of soybean varieties well adaptable to upland-paddy field rotational croppings, the difference of growth characteristics between upland and paddy-field including yield potentials of current recommending soybean varieties were evaluated. The growth characteristics, both above and under-ground, which were measured at flowering stage were generally greater in paddy-field but the number of root nodules was much greater in upland, thus the artificial inoculation was practically recommended for soybean growing in paddy-fields. Mean seed yield was generally higher in paddy-fields than in upland. All soybean varieties showed higher seed yield in the early planting date, April 20, were somewhat susceptible to soybean mosaic virus(SMV), thus they could be escaped from the disasterous endemic necrotic soybean mosaic virus(SMV-N). Soybean varieties showed over 4.0 tons/ha seed yield in the paddy-field were Williams 79, Union, SS77053, and Namhaekong. At the same time, Jangyeobkong and Danyeobkong were the most stable soybean varieties among the tested soybean varieties with less than 10% of coefficient variation values in all planting dates in paddy fields. Compared with Hwangkeumkong which is most widely being cultivated on farmer's fields, soybean varieties showed high yields in paddy-field were higher in plant height, less in the number of branches, and more in the number of nodes on main stem. At the same time, they had medium seed size which would bring the good germination and stands. Disease resistance especially for necrotic soybean mosaic virus was also one of the most decisive factors in seed yields for the early planted soybeans.

  • PDF

Variation of Anthocyanin Content in Color-Soybean Collections (유색콩 수집종의 안토시아닌 함량 변이)

  • Jung, Chan-Sik;Park, Yong-Jin;Kwon, Yil-Chan;Suh, Hyung-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.3
    • /
    • pp.302-307
    • /
    • 1996
  • Seed coat anthocyanin can be purified by soaking 3 times in methanol solution supplemented with one percent of HCl. Anthocyanin content was very wide range in collected lines and average anthocyanin content of black seed coat lines was 15.07 permillage, but that of white mottled on brown seed coat lines was 0.31 permillage. In black seed coat lines green seed embryo type has more anthocyanin in amount compare to yellow seed embryo. Anthocyanin accumulation was promoted in late maturing lines compare to early maturing lines. Positive correlations were observed among 100 seed weight, days to flowering, days to growing and anthocyanin content, but negative correlation between days from flowering to maturity and anthocyanin content. Collected black seed coat lines were divided into two maturity groups. Group VI which has longer than group V in days to maturity accumulated more anthocyanin compare to group V. When the seeding date was May 15, highest anthocyanin content was observed.

  • PDF

Cation and Nitrogen Contents, and Growth of Soybean against Underground Water Level at Reproductive Stage (생식생장기에 지하수위 처리가 콩의 생육과 질소 및 몇가지 양이온 함량에 미치는 영향)

  • Park, Gwan-Soo;Ahn, Tae-Hwan;Cho, Jin-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.2
    • /
    • pp.225-230
    • /
    • 2009
  • This study was conducted to response the growth, seed yield, nitrogen content and different cation content of two soybean, flooding-tolerant cv. Pungsannamulkong (PNSK) and flooding-sensitive cv. Tawonkong (TWK) when these were subjected to flooding stress at R1 stage for cultivation in paddy field. Flooding, underground water levels (UWL) of 0 cm, 10 cm and 40 cm, was experimented from flowering time to harvest time. The dry matter and seed yield of soybean with UWL of 0 or 10 cm declined in comparison with UWL of 40 cm and these were more reduction in TWK than in PNSK. The amount of nitrogen uptake decreased in higher UWL and there was a high significant relationship $(R^2=0.872)$ between nitrogen content and seed yield at flooding stress. K content of leaf and stem in soybean plants had a small change with UWL but Ca content had a decrease (leaf and stem) or increase (root). Mn and Fe content were increased at higher UWL and were more in TWK than in PNSK.

Soybean Ecological Response and Seed Quality According to Altitude and Seeding Dates

  • Shin, Sang-Ouk;Shin, Seong-Hyu;Ha, Tae-Jeong;Lim, Sea-Gyu;Choi, Kyung-Jin;Baek, In-Youl;Lee, Sang-Chul;Park, Keum-Yong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.2
    • /
    • pp.143-158
    • /
    • 2009
  • This experiment was carried out to examine ecological response and soybean quality as affected by environmental cultivation for producing high seed quality in domestic soybean variety. The results are as follows: Under equal cumulative temperature condition, soybean plants grown in Muju showed longer days to flowering, which was an effect of the long day-length on high latitudes, and longer duration of reproductive stage as a result of low temperature within that period. Considering apparent seed quality, 100 seed weight of soybeans grown in Muju was heavier than Miryang. Ratio of seed crack and disease-damaged seeds was lower in Muju, and these parameters decreases as planting was delayed. The protein contents did not show significant difference in terms of altitude and planting date, however, crude oil contents were higher in Miryang. An opposite trend was observed in C18:1 and C18:3. In the fatty acid composition, the proportion of C18:1 decreased as seeding date was delayed, and was higher in Miryang. Opposite observations were obtained from C18:3. The anthocyanin contents were highest on June 10 planting and higher in Muju than in Miryang. Isoflavone content was higher as seeding date was delayed and is similar accross seeding dates in Muju. As a summary, for high seed quality production the optimum planting date was June 10, and Muju was more suitable region than Miryang.

Effect of Planting Date and Plant Density on Yield and Quality of Soybean Forage in Jeju

  • Kang, Young-Kil;Kim, Hyun-Tae;Cho, Nam-Ki;Kim, Yeong-Chan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.2
    • /
    • pp.95-99
    • /
    • 2001
  • Soybean [Glycine max (L.) Merr.) is known to produce the highest total digestible mutrients (TDN) yield among summer grain legumes in Jeju area but little is known about the effects of cultural practices on forage yield and quality. A determinate soybean cv. Baegunkong was planted on 5 June, 20 June, and 3 July and grown at four plant densities (30, 50, 70 and 90 plants $m^{-2}$ in 1998 in Jeju to evaluate the effects of planting date and plant density on the yield and quality of soybean forage. Days to flowering decreased from 47 to 38 days, average plant height from 61 to 51cm and main stem diameter from 6.31 to 5.00mm as planting was delayed from 5 June to 3 July. Average plant height quadratically increased from 45 to 62cm as plant density increased from 30 to 90 plants $m^{-2}$. Planting date did not affect the average dry matter, crude protein, and TDN yields. The average dry matter and TDN yields displayed a quadratic response to plant density and the optimum plant density for both dry matter and TDN yields was estimated about 60 plants $m^{-2}$. Plant density had no effect on crude protein yield. Planting date did not significantly influence forage quality. The crude protein content was not significantly influenced by plant density. Increasing plant density slightly increased acid detergent fiber content but slightly decreased TDN content.

  • PDF

Changes of Chemical Components During Seed Development in Black Soybean (Glycine max L.)

  • Shim Sang In;Kang Byeung Hoa
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.4
    • /
    • pp.331-336
    • /
    • 2004
  • Changes in the level of metabolites in leaves and pods were examined with respect to the seed chemical composition in black soybean. There was no further increase in pod length after 42 days after flowering (DAF). Pod weight, however, persistently increase until 73 DAF, thereafter the weight was slightly lowered. The seed storage protein, however, increased drastically as the increasing rate of pod weight was lessened at 61 DAF. The accumulation of seed storage proteins was occurred conspicuously as the increasing rate of pod weight was slowed down. The chlorophyll content both in leaves and pods was drastically decreased after 50 DAF. The beginning of drastic reduction in chlorophyll content was occurred concomitantly with the reduction of soluble protein content in leaves. The sugar content in leaves showed similar tendency with chlorophyll and soluble protein content. The starch level in leaves, however, showed different changing pattern during seed development. The starch content in leaves was increased persistently until 66 DAF, thereafter the content was decreased drastically to about $55\%$ of maximal value at 66 DAF. Total phenolics content in leaves and the anthocyanins content in seeds were stable without noticeable increase until 66 DAF. The contents were increased dramatically after 66 DAF showing the synchronized pattern with the decrease in starch level in leaves. The levels of the selected metabolites in leaf and seed suggested that the accumulation of chemical components of black soybean seed is launched actively at 66 DAF. The profile of storage proteins was nearly completed at 61 DAF because there was no large difference in densitometric intensity among protein subunits after 61 DAF. In soybean, chemical maturation of seed begins around 61 to 66 DAF at which most metabolites in vegetative parts are decreased and remobilized into maturing seeds.

Source-sink Relationships of Soybean as Influenced by Drought Stress during the Pod and Seed-developing Stage

  • Shin Seong-Hyu;Park Keum-Yong;Shin Sang-Ouk;Lim Sea-Gyu;Ha Tae-Joung;Kim Do-Soon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.4
    • /
    • pp.310-317
    • /
    • 2006
  • This study was conducted to investigate the influence of drought stress during the pod developing and seed filling stage on source-sink relationships of soybean (Glycine max). Drought treatments were imposed by withholding water at the full-pod stage, 19 days after flowering, and then limited watering was relieved at 15 days after the initiation of drought treatment. Soybean seed yield was reduced by 39% mainly due to decreased pod number under drought stress, but the 100-seed weight was relatively less reduced. In spite of the 15-day drought during the full-pod stage, soybean produced good seeds showing similar l00-seed weight, protein, starch and soluble sugar content to those from the well-watered. Although drought during the full-pod stage caused source limitations; i.e. accelerated leaf senescence and reduced leaf soluble sugars, it did not cause limitations of other source characteristics such as SGR and leaf starch level. This is because the reduction in size of sinks, such as pod and seed abortions compensated for source limitations, resulting in balanced source-sink as expressed by LAR and the ratio of leaf area to seed dry weight. Drought stress during the pod developing and seed filling stage did not disrupt the source-sink balance