• Title/Summary/Keyword: Soybean Extrusion

Search Result 23, Processing Time 0.025 seconds

Influence of Extrusion on the Solubility of Defatted Soybean Flour in Enzymatic Hydrolysis

  • Cha, Jea-Yoon;Shin, Han-Seung;Cho, Yong-Jin;Kim, Chong-Tai;Kim, Chul-Jin
    • Food Science and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.543-548
    • /
    • 2007
  • Low-energy processing technology, which enhances the utility of defatted soybean flour (DSF), was developed using extrusion processing. DSF was extruded at different conditions using a twin screw extruder and then, dried at $40^{\circ}C$ for 20 hr. The nitrogen solubility index (NSI), viscosity, water solubility index (WSI), and water absorption index (WAI) of DSF increased after extrusion processing. The density of DSF extrudates decreased with the decrease in water content from 53 to 33% and the increase in extrusion temperature from 110 to $160^{\circ}C$. The addition of NaOH from 1.2 to 1.8% and citric acid from 1 to 5% increased the total solubility (TS) of DSF due to the decrease of protein coiling and hydrophobic bonds formation during extrusion processing. When viscozyme was reacted first, TS, NSI, and soluble carbohydrate content of DSF hydrolysates increased about 12, 6, and 7%, respectively, compared to them reacted with protease first. The TS and NSI of DSF hydrolysates were increased about 15 and 10%, respectively, by extrusion processing at alkaline and acidic pH. Extrusion processing at alkaline and acidic pH contributed the increase of efficiency to hydrolyze DSF samples using enzyme.

Effects of Extrusion Conditions of Corn and Soybean Meal on the Physico-Chemical Properties, Ileal Digestibility and Growth of Weaned Pigs

  • Chae, B.J.;Han, In K.;Kim, J.H.;Yang, C.J.;Chung, Y.K.;Rhee, Y.C.;Ohh, S.J.;Ryu, K.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.2
    • /
    • pp.170-177
    • /
    • 1997
  • Two experiments were conducted to evaluate the effects of different extrusion conditions of corn and soybean meal on physico-chemical properties, ileal digestibility of amino acid and growth performance in weaned pigs. In Expt. 1, to compare physico-chemical properties and ileal digestibility of extruded corn and soybean meal, ground corn (2 mm screen) and soybean meal were separately extruded in four different conditions: (1) no preconditioning, low water supply (3.0 l/min) (NCLW), (2) no preconditioning, high water supply (7.0 l/min) (NCHW). (3) preconditioning (steam 3.0 l/min) with low water supply (3.0 l/min) (CLW), and (4) preconditioning (steam 3.0 l/min) plus high water supply (7.0 l/min) (CHW). Twenty-five cannulated pigs ($L{\times}Y{\times}D$, 7.62 kg BW for soybean meal, 8.80 kg BW for corn) were employed to determine nutrients digestibility of the extruded feedstuffs. In Expt. 2, a total of 90 pogs ($L{\times}Y{\times}D$, 9.18 kg BW) were used for a 28 d feeding trial to compare growth performance of pigs as affected by different extrusion conditions. Before mixing, corn and soybean meal were blended and extruded by the same conditions as described in Expt. 1. corn extruded with NCLW showed the highest (p < 0.05) degree of gelatinization (DG), compared to the lowest values observed for NCHW. Extrusion of corn with preconditioning (CLW and CHW) increased (p < 0.05) the DG as compared to the extrusion condition of NCHW. Extruded SBM with NCLW showed the lowest (p < 0.05) degree of texturization among treatments. The ileal digestibility of GE in SBM was higher with NCHW and CHW as compared to NCLW. The ileal digestibility of CP was lower in extruded corn, but was higher in extruded SBM, compared to untreated sample. Lysine digestibility of extruded corn (except corn with NCHW) was in general significantly improved. Extrusion of SBM resulted in no improvements in ileal digestibility of amino acids, but extruded SBM with NCLW had lower lysine digestibility compared to other treatments. In growth responses, pigs fed a diet with CLW had higher, but not significant, average daily gain (ADG) than other treatments during first 2 weeks. From d 15 to 28, pigs fed a diet with CHW had significantly less (p < 0.05) average daily feed intake (ADFI) than others except NCHW. In conclusion, the proper extrusion condition for corn and SBM in terms of ileal digestibility of amino acids and growth performance of weaning pigs seems to be the combination of preconditioning and a low water supply (3.0 l/min).

EFFECT OF SOYBEAN EXTRUSION ON NITROGEN METABOLISM, NUTRIENT FLOW AND MICROBIAL PROTEIN SYNTHESIS IN THE RUMEN OF LAMBS

  • Ko, J.Y.;Ha, J.K.;Lee, N.H.;Yoon, C.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.3
    • /
    • pp.571-582
    • /
    • 1992
  • Soybeans were dry extruded at three different temperatures (125, 135 and $145^{\circ}C$) for 30 s. Four lambs fitted with cannulae in the rumen and abomasums were used in a balanced $4{\times}4$ Latin square design. Lambs were fed at 2 h intervals for 12 times a day with automatic feeder to maintain steady state conditions in digestive tract. A dual-phase marker system was used to estivate ruminal flow rate of both liquid and solid digesta. Objectives of this study were to determine the effect of extrusion temperature of raw soybean on the ruminal liquid and solid dilution rate, nitrogen digestion and flow at the abomasum and availability of amino acid in lambs. There were no significant effects of extrusion on liquid and solid dilution rate, and liquid volume. Ruminal liquid flow rate was not influenced by extrusion and ranged from 389 to 435 ml/hr. Extrusion had no influence on ruminal OM digestion and flow rate to the abomasums. Dietary N flow to the abomasums increased (p < 0.05) as extruding temperature increased. Extruding temperature had a significant effect (p < 0.05) on flow of N escaping ruminal degradation and ranged from 34.91 to 57.38%. Microbial N synthesized/kg OMTDR ranged from 27 to 37 g and highest with $145^{\circ}C$ ESB diet. Extrusion decreased the amount of degradable amino acid in the rumen and increased the supply of amino acid to the lower gut, especially with 135 and $145^{\circ}C$ ESB diets.

Extrusion Processing of Low-Inhibitor Soybeans Improves Growth Performance of Early-Weaned Pigs

  • Kim, I.H.;Hancock, J.D.;Jones, D.B.;Reddy, P.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.8
    • /
    • pp.1251-1257
    • /
    • 1999
  • Two experiments were conducted to determine the effects of roasting and extrusion on nutritional value of conventional and low-inhibitor soy beans for nurser-age pigs. In Exp. 1, 100 weaning pigs (7.5 kg average initial BW) were used in a 35-d growth assay to determine the effects of processing method (roasting in a Rast-A-Tron$^{TM}$ raster vs extrusion in an Insta-Pro$^{TM}$ extruder) on the nutritional value of Williams 82 soybeans with (+K) and without (-K) gene expression for the Kunitz trypsin inhibitor. Treatments were 48% soybean meal with added soybean oil, +K roasted, +K extruded, -K roasted and -K extruded. All diets were formulated to contain 3.5 Mcal DE/kg, with 0.92% lysine for d 0 to 14 and 0.76% lysine for d 14 to 35 of the experiment. The lysine concentrations were 80% of NRC (1988) recommendations to accentuate difference in response to protein quality and lysine availability. For d 0 to 14, pigs fed extruded soybeans (+K and -K) had greater ADG (p<0.001), ADFI (p<0.09) and gain/feed (p<0.01) than pigs fed roasted soybeans. For d 14 to 35 and overall, the same effects were noted, i.e., pigs fed extruded soybeans had greater ADG, ADFI and gain/feed than pigs fed roasted soybeans (p<0.03). Also, pigs fed -K soybeans were more efficient (p<0.008) than pigs fed +K soybeans. In Exp. 2, 150 weanling pigs (7.0 kg average initial BW) were used in a 35-d growth assay. All diets were formulated to contain 3.5 Mcal DE/kg, with 1.25% lysine for d 0 to 14 and 1.10% lysine for d 14 to 35 of the experiment. The lysine concentrations were formulated to be in excess of NRC recommendation to determine if differences in nutritional value of the soybean preparations could be detected in protein-adequate diets. For d 0 to 14 (p<0.06), 14 to 35 (p<0.03) and 0 to 35 (p<0.02), pigs fed extruded soybeans had greater ADG and gain/feed than pigs fed roasted soybeans. Apparent digestibilities of DM, N and GE were greater for diets with extruded soybeans than diets with roasted soybeans and diets with soybean meal and soybean oil were intermediate. The response to extrusion processing was greater with -K than +K soybeans, with pigs fed extruded -K soybeans having the greatest growth performance and nutrient digestibilities and lowest skin-fold thickness of any treatment. In conclusion, extrusion yielded a full-fat soy product of greater nutritional value than roasting. Also, selection against genetic expression of the Kunitz trypsin inhibitor improved nutritional value of the resulting soybean preparations.

EFFECTS OF PROTEIN LEVEL AND EXTRUSION PROCESSING OF SOYBEAN MEAL ON THE PERFORMANCE OF GROWING PIGS

  • Paik, I.K.;Um, J.S.;Lee, S.H.;Chung, M.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.2
    • /
    • pp.129-133
    • /
    • 1995
  • A feeding trial was conducted to evaluate the effects of crude protein concentration (44% vs 48%) and extrusion processing of soybean meal (SBM) on the performance of weanling and growing pigs. One hundred and ninety two (96 pigs of each sex) 3 way crossed (Landrace ${\times}$ Hampshire ${\times}$ Duroc) weaned pigs were allotted to 12 pens each of 16 pigs (8 pigs of each sex). Three pens were assigned to each of the 4 treatment; $T_1$; 44% SBM diet, $T_2$; extruded 44% SBM diet, $T_3$; 48% SBM diet and $T_4$; extruded 48% SBM diet. The 44% SBM diet was formulated to have 18% CP for the starter phase (5-10 wk of age) and 15% CP for the grower phase (10-15 wk of age). The other treatments used equivalent amount of each SBM, replacing the 44% SBM. Chemical assay showed that extrusion processing generally decreased amino acid content especially total lysine and available lysine. Extrusion increased Hunterlab color +a value and decreased the urease activity index. The body weight gains for the $T_3$ and $T_4$ pigs were significantly(p < 0.05) greater than for those on $T_1$ and $T_2$ for the starter phase, but not the grower phase. Extrusion processing did not improve weight gain. Feed intake for the overall period was significantly(p < 0.05) different among treatments. The feed conversion ratios were not significantly different among treatments. An economic analysis showed that the high protein (48%) SBM diet was more cost effective than the low protein(44%) SBM diet, for the starter phase.

UTILIZATION OF FULL FAT SOYBEAN IN POULTRY DIETS II. BROILER

  • Cheva-Isarakul, B.;Tangtaweewipat, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.1
    • /
    • pp.89-95
    • /
    • 1995
  • The efficient use as a protein source for poultry of full fat soybean (FFSB) treated under various processes, i. e. steaming under pressure 40 lbs/sq. inch for 5, 10 or 15 minutes or roasting in a baking oven at $180^{\circ}C$ for 20, 30 or 40 minutes or extruding was compared with that of soybean meal. Eight hundred straight run broiler chicks (AA 707) were randomly allotted into 8 treatments of 4 replicates, fed with, rations containing either kind of the above mentioned FFSB for 6 weeks (Wks 1-7). The protein content of the diets for chicks during 1-3, 3-6 and 6-7 weeks of age was 21, 19 and 17% respectively. The result revealed that steaming can destroy 76-92% of the trypsin inhibitor activity (TlA) in soybean, particularly that at 15 minutes, while roasting can get rid of only 13-28% TlA. Chicks fed roasted FFSB had an enlarged pancreas and showed inferior performances to the steaming and the extrusion products. Steaming should be at least 10-15 minutes in order to obtain the comparable performances to those of the extrusion or of the soybean meal. The extruded FFSB showed the best feed conversion ratio. This might be due to the very fine particle of the product.

Measurement of the Viscosity of Semi-Soild Foods by Extrusion Capillary Viscometer (Extrusion Capillary Viscometer를 이용한 반고체 식품의 점도 측정 방법)

  • 김길환;이부용;김동만
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.20 no.5
    • /
    • pp.509-512
    • /
    • 1991
  • Rheological property and apparent viscosity(η)of several semi-solid foods were measured with extrusion capillary viscometer. Apparent viscosities of several semi-solid foods ranged from 0.2714 Pa.s to 2.6453 Pa.s Rheological property of spread type semi-solid foods was pseudoplastic (with yield value). Especially, as the moisture content and temperature of Chungkook-jang spread increased, apparent viscosity decreased. On the contrary, as the added soybean oil content of Chungkook-jang spread increased, apparent viscosity also increased.

  • PDF

Effects of Prefermentation and Extrusion Cooking on the Lactic Fermentation of Rice-Soybean Based Beverage (예비발효 및 압출조리 전처리가 쌀-대두분 혼합액의 유산균 발효에 미치는 영향)

  • Lee, Cherl-Ho;Souane, Moussa;Rhu, Ki-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.666-673
    • /
    • 1988
  • The enhancement of the growth of lactic bateria in rice-based beverage was achieved by the prefermentation of cereals with a mixed culture of Bacillus and yeast followed by extrusion cooking. The rice-soybean milk blend was inoculated with a mixed culture of Bacillus laevolactis and Saccaromyces cerevisiae, and fermented in solid state at $45^{\circ}C$. It was extruded in an autogenous single screw extruder for sterilization as well as for partial digestion, and subjected to lactic fermentation in liquid state. The combined prefermentation and extrusion cooking increased the content of water soluble solid. It stimulated the growth of lactic bacteria as well as the acid production and increased dispersion stability and sensory acceptability.

  • PDF

Effect of extrusion of soybean meal on feed spectroscopic molecular structures and on performance, blood metabolites and nutrient digestibility of Holstein dairy calves

  • Berenti, Ammar Mollaei;Yari, Mojtaba;Khalaji, Saeed;Hedayati, Mahdi;Akbarian, Amin;Yu, Peiqiang
    • Animal Bioscience
    • /
    • v.34 no.5
    • /
    • pp.855-866
    • /
    • 2021
  • Objective: Performance and physiological responses of dairy calves may change by using extruded soybean meal (ESBM) instead of common soybean meal (SBM) in starter feed. The aims of the current study were i) to determine the effect of extrusion processing of SBM on protein electrophoretic size, fourier transform infrared spectroscopy (FTIR) structures and Cornell Net Carbohydrate and Protein System (CNCPS) protein subfractions and ii) to determine the effect of substitution of SBM with ESBM in starter feed of Holstein heifer calves during pre and post-weaning on performance, nutrient digestibility, and blood metabolites. Methods: The SBM was substituted with ESBM at the level of 0%, 25%, 50%, 75%, and 100% (dry matter [DM] basis). Fifty heifer calves (initial body weight 40.3±0.63 kg) were used for the study. After birth, animals were fed colostrum for 3 days and then they were fed whole milk until weaning. Animals had free access to starter feed and water during the study. Results: Extrusion of SBM decreased electrophoretic protein size and increased rapidly degradable true protein fraction, changed FTIR protein and amide II region. With increasing level of ESBM in the diet, starter intake increased quadratically during the pre-weaning period (p<0.05) and body weight, DM intake and average daily gain increased linearly during the post-weaning and the whole study period (p<0.05). Tbe DM and crude protein digestibilities at week 14 and blood glucose and beta hydroxybutyric acid increased linearly in calves as the level of ESBM increased in the diet (p<0.05). Conclusion: Dairy calves performance and physiological responses were sensitive to SBM protein characteristics including electrophoretic size, FTIR structures and CNCPS protein fractions.

Quality properties of texturized vegetable protein made from defatted soybean flour with different soybean seed coat contents (대두껍질 함량에 따른 탈지대두분말 식물조직단백의 품질 특성)

  • Chan Soon Park;Mi Sook Seo;Sun Young Jung;Seul Lee;Boram Park;Shin Young Park;Yong Suk Kim
    • Food Science and Preservation
    • /
    • v.30 no.5
    • /
    • pp.896-904
    • /
    • 2023
  • The texturization characteristics of textured vegetable protein (TVP) were investigated based on the extent of soybean decoating during the pretreatment of defatted soybean flour used for TVP. The raw materials for TVP consisted of 50% defatted soybean flour, 30% gluten, and 20% corn starch. The weight ratios of soybean seed coat to soybean flour were 9%, 6%, 3%, and zero. Extrusion was performed using an extruder equipped with a cooling die, maintaining a barrel temperature of 190℃ and screw speed of 250 rpm, Water was injected at a rate of 9 rpm using a metering pump. Regarding the textures of the extruded TVPs produced from defatted soybean flour, an increase in the soybean seed coat content led to a decrease in the apparent fibrous structural layer and an increase in hardness. However, there were no significant changes in elasticity and cohesion. Moreover, as the soybean seed coat content increased, the pH of TVPs decreased. A higher soybean seed coat content also tended to lower the moisture content, increasing water absorption, solids elution, and turbidity. These results suggest that an increased seed coat content reduces the proportion of protein, and the fibers present in the seed coats prevent texturization.