• Title/Summary/Keyword: South-East Region

Search Result 399, Processing Time 0.025 seconds

Analysis of Domestic and Foreign Contributions using DDM in CMAQ during Particulate Matter Episode Period of February 2014 in Seoul (2014년 2월 서울의 고농도 미세먼지 기간 중에 CMAQ-DDM을 이용한 국내외 기여도 분석)

  • Kim, Jong-Hee;Choi, Dae-Ryun;Koo, Youn-Seo;Lee, Jae-Bum;Park, Hyun-Ju
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.1
    • /
    • pp.82-99
    • /
    • 2016
  • This study was carried out to understand the regional contribution of Particulate Matter (PM) emissions from East Asia ($82^{\circ}{\sim}149^{\circ}E$, $18^{\circ}{\sim}53^{\circ}N$) to Seoul during high concentration period in February 2014. The Community Multi-scale Air Quality (CMAQ) version 5.0.2 with Decoupled Direct Method (DDM) was used to analyze levels of contributions over Seoul. In order to validate model performance of the CMAQ, predicted PM and its chemical species concentrations were compared to observations in China and Seoul. Model predictions could depict the daily and hourly variations of observed PM. The calculated PM concentrations, however, had a tendency of underestimation. The discrepancies are due to uncertainties of meteorological data, emission inventories and CMAQ model itself. The high PM concentration in Seoul was induced by stationary anticyclone over the West Coast of Korea during 24 to 27 February. The DDM in CMAQ was used to analyze the contributions of emissions from East Asia on Seoul during this PM episode. $PM_{10}$ concentration in Seoul is contributed by 39.77%~53.19% from China industrial and urban region, 15.37%~37.10% from South Korea, and 9.03%~18.05% North Korea. These indicate that $PM_{10}$ concentrations in Seoul during the episode period are dominated by long-range transport from China region as well as domestic sources. It was also found that the largest contribution region in China were Shandong peninsula during the PM event period.

Review on Marine Terraces of the East Sea Coast, South Korea : Gangreung - Busan (강릉-부산 간 동해안 해안단구 검토)

  • Choi, Sung-Ja
    • Economic and Environmental Geology
    • /
    • v.52 no.5
    • /
    • pp.409-425
    • /
    • 2019
  • Marine terraces, a step-like landform, are important geologic markers that provide tectonic information during the Quaternary Period. Marine terraces are well developed along all coastlines(East, West, and South) of the Korean Peninsula, those along the East coastline are the most distinctive. The marine terraces of the East coastline are classified into 4-6 flights that are several meters or several tens of meters above the present sea level. It is believed that these terraces, except for the lowest one, were formed in the middle Pleistocene. In the base of the OSL age dating results and Blake excursion events of magnetostratigraphy, the $2^{nd}$ and $3^{rd}$ terraces are correlated to the last interglacial stage. Considering the marine terraces linked to a sea-level curve of the Pleistocene, it is thought that regional tectonic movements have uplifted the East coastal area since the middle Pleistocene. Besides, former shorelines of each terrace have varied elevations from Gangreung to Busan bay, which can be divided into four regions, namely, Gangreung-Yonghanri(I), Homikot-Najung(II), Najung-Bangeojin(III), and Waesung-Busan Bay(IV). The former shorelines of each terrace at both Gangreung-Yonghanri(I) and Najung-Bangeojin(III) are higher than those in the other two regions, due to block movements by regional faults such as the Ocheon Fault or its subsidiaries, the Gampo Lineament and Ulsan Fault. Uplift rate of the East coast ranges from 0.2 m/ky to 0.3 m/ky, but each region shows different uplift rate.

Possible Changes of East Asian Summer Monsoon by Time Slice Experiment (Time Slice 실험으로 모의한 동아시아 여름몬순의 변화)

  • Moon, JaYeon;Kim, Moon-Hyun;Choi, Da-Hee;Boo, Kyung-On;Kwon, Won-Tae
    • Atmosphere
    • /
    • v.18 no.1
    • /
    • pp.55-70
    • /
    • 2008
  • The global time slice approach is a transient experiment using high resolution atmosphere-only model with boundary condition from the low resolution globally coupled ocean-atmosphere model. The present study employs this "time slice concept" using ECHAM4 atmosphere-only model at a horizontal resolution of T106 with the lower boundary forcing obtained from a lower-resolution (T42) greenhouse gas + aerosol forcing experiment performed using the ECHO-G/S (ECHAM4/HOPE-G) coupled model. In order to assess the impact of horizontal resolution on simulated East Asian summer monsoon climate, the differences in climate response between the time slice experiments of the present and that of IPCC SRES AR4 participating 21 models including coarser (T30) coupled model are compared. The higher resolution model from time slice experiment in the present climate show successful performance in simulating the northward migration and the location of the maximum rainfall during the rainy season over East Asia, although its rainfall amount was somewhat weak compared to the observation. Based on the present climate simulation, the possible change of East Asian summer monsoon rainfall in the future climate by the IPCC SRES A1B scenario, tends to be increased especially over the eastern part of Japan during July and September. The increase of the precipitation over this region seems to be related with the weakening of northwestern part of North Pacific High and the formation of anticyclonic flow over the south of Yangtze River in the future climate.

A Numerical Modeling of the East sea circulation (동해 순환의 수치모델)

  • Seung, Young-Ho;Kim, Kyun
    • 한국해양학회지
    • /
    • v.28 no.4
    • /
    • pp.292-304
    • /
    • 1993
  • The east Sea circulation is numerically modeled with refined grid resolution elaborated open boundary condition, and by directly imposing the measured surface temperature and salinity typical the east Korean Warm current are clearer than those in previous works. among others, The Ulleung warm Water and the Intermediate Water of minimum salinity are nicely reproduced. The latter is formed in the northern/northwestern coastal region in winter and is advocated southward by strong under-current. the former is associated with a locally generated anti-cyclonic gyres. The model indicates strong seasonal variation of Nearshore Current along the Japanese coast from wintertime barotropic to summertime baroclinic structures. the associated strong reversed under-cur-rent in summer is not well understood. Global circulation pattern is characterized by two regions of cyclonic and anti-cyclonic gyres in the north and south, respectively. The presence of these gyres indicates importance of local dynamics in East Sea circulation. This model, however, does not completely resolve the problem of overshooting of the East Korean Warm current.

  • PDF

Comparative Analysis of Observation and NWP Data of Downslope Windstorm Cases during 3-Dimensional Meteorological Observation Project in Yeongdong Region of Gangwon province, South Korea in 2020 (2020 강원영동 공동 입체기상관측 기간 강풍 사례에 대한 관측자료와 수치모델 비교 분석)

  • Kwon, Soon-Beom;Park, Se-Taek
    • Atmosphere
    • /
    • v.31 no.4
    • /
    • pp.395-404
    • /
    • 2021
  • In order to investigate downslope windstorm by using more detailed observation, we observed 6 cases at 3 sites - Inje, Yongpyeong, and Bukgangneung - during "3-D Meteorological Observation Project in Yeongdong region of Gangwon province, South Korea in 2020." The results from analysis of the project data were as follows. First, AWS data showed that a subsidence inversion layer appeared in 800~700 hPa on the windward side and 900~850 hPa on the leeward side. Second, before strong wind occurred, the inversion layer had descended to about 880~800 hPa. Third, with mountain wave breaking, downslope wind was intensified at the height of 2~3 km above sea level. After the downslope wind began to descend, the subsidence inversion layer developed. When the subsidence inversion layer got close to the ground, wind peak occurred. In general, UM (Unified Model) GDAPS (Global Data Assimilation Prediction System) have had negative bias in wind speed around peak area of Taebaek mountain range, and positive bias in that of East Sea coast area. The stronger wind blew, the larger the gap between observed and predicted wind speed by GDAPS became. GDAPS predicted strong p-velocity at 0600 LST 25 Apr 2020 (4th case) and weak p-velocity at 2100 LST 01 Jun 2020 (6th case) on the lee-side of Taebaek mountain range near Yangyang. As hydraulic jump theory was proved, which is known as a mechanism of downslope windstorm in Yeongdong region, it was confirmed that there is a relationship between p-velocity of lee-side and wind speed of eastern slope of Taebaek mountain range.

A Study on Sea Water and Ocean Current in the Sea Adjacent to Korea Peninsula -The Vertical Structure of Temperatures in the East Sea of Korea- (한반도 근해의 해류 및 해수특성 -한국 동해의 수온의 수직구조-)

  • NA Jung-Yul;LEE Seong-Wook;CHO Kyu-Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.4
    • /
    • pp.215-228
    • /
    • 1991
  • In the East Sea of Korea the vertical structure functions of the temperature field were evaluated and the characteristic thermal zone was classified by the use of the empirical orthogonal function(EOF) method. The East Sea of Korea within the hydrographic lines of 10-107 of the Fisheries Research and Development Agency of Korea(FRDA) can be divided into three thermal regions by the characteristics of the vertical temperature variability. They are the North Korean Cold Current(NKCC) region near the coast which extends parallel to the north-south direction, the Warm-Core(WC) region which dominates almost all the hydrographic stations of the Line 104 of the FRDA and occupies a few stations of the Line-103 and -105 with its axis at the Line 104, and the East Korea Warm Current(EKWC) region which is bisected into the northern and the southern part by the WC region, respectively. Considering the two most important modes, $85.20-98.20\%$ of the total variance of temperature variation are explained in the NKCC region, $85.20-92.90\%$ in the EKWC region, and$85.50-91.70\%$ in the WC region. The first mode has its peak value at the surface with the annual cycle of variation. The spatial pattern of the first mode portrays a coherent vertical variation in the EKWC region and a clear anti-correlation both in the NKCC region and in the WC region where the zero-crossing depths are loom and 200m, respectively. The second mode of the NKCC region is particularly noticeable, haying its peak at loom with coherent vertical variation. To study the time dependency of the vertical structure functions, the extended EOF(EEOF) method was used. The persistence of the first mode is less than 4 months in the study area. The annual variation of the first mode in the NKCC region is different from those in the WC region and in the EKWC region.

  • PDF

Relationship between the Catches of Tuna and Oceanographic Conditions in the South-East Pacific (남동 태평양의 참치 어획양과 해양환경과의 관계)

  • CHO Kyu-Dae;KIM Yun-Ae;PARK Sung-Woo;KIM Jae-Chul;PARK Jae-Chul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.4
    • /
    • pp.360-369
    • /
    • 1987
  • The relationship between the catches of tuna and hydrographic conditions in South-East Pacific region (latitude $5^{\circ}N-12^{\circ}S$, longitude $135^{\circ}W-115^{\circ}W$) was investigated by using the catch data of tuna and Digital Bathythermograph (DBT) data from December 9, 1980 to April 2, 1981. The results are as follows : The study area were located in South Eguatorial Current regions including equatorial upwelling regions in $5^{\circ}N\;to\;12^{\circ}S$. The horizontal mean temperature at the depth of 10m on the first quarter months in the study area was about $25^{\circ}C$C and the salinity of those fishing areas ranged from 34.8 to $35.0\%_{\circ}$. Yellowfin tuna and bigeye tuna were mainly caught in SW vertical temperature profile type, which the depth of thermocline ranged from loom to 300m, and temperature difference of thermocline was about $12^{\circ}C$. The deeper the depth of thermocline, the more the catches of tuna. While albacore tuna was caught well in SS vertical temperature profile type which the temperature of thermocline ranged from $9^{\circ}\;to\;26^{\circ}C$ and its gradient was very smooth. The depth of 1 ml/l surface of dissoved oxygen content ranged from loom to 200m in the South-East Pacific between longitude $140^{\circ}W-100^{\circ}W$, but it was shallower than 100 m near the North-South American continent. The catches of bigeye tuna were larger than those of yellowfin tuna in South Equatorial Current region. As approaching to the South and North American continent, the catches of yellowfin tuna and bigeye tuna decreased because the thermocline becomes shallower and steeper and the depth of the 1 m1/1 surface of dissolved oxygen content became shallower.

  • PDF

우전탄좌 지질조사 보고서

  • 이돈영;유양수
    • Journal of the Korean Professional Engineers Association
    • /
    • v.5 no.17
    • /
    • pp.3-10
    • /
    • 1972
  • This report is the result of the basic geologic investigation for the purpose of preparing the long-term development program of the U-jeon Consolidated Coal kline. The Consolidated Coal Mine is located at Gujeol-ri, Wangsan-myeon, Myeongju-gun, and Yucheon-ri, Bug-myeon, Jeongseon-gun, Gan-gweon Province (128$^{\circ}$ 43′10.4"-128$^{\circ}$ 46′10. 4"of east long-ititude, 37$^{\circ}$ 30′-37$^{\circ}$ 33′ of north latitude). This region, the western part of Taebaek mountain range, shows a ragged mountinous feature. Formations of the Pyeongan System of Paleozoic Era are distribu ted in the region with the surrounding Great Limestone Series of Joseon System which covers the south-eastern part of the region. The Pyeongan System is divided into four formations, namely, the Hongjeom, the Sadong, the Gobang and the Hongam, in ascending order. The sadong Formation intercalates several coal beds, and two coal beds out of them are minable. The coal beds are variable in thickness, having the repeated swelled or poket and the pinched parts, which suggest all intense disturbance caused by folding. The heat value of the coal is 5, 500cal. on the average. The total amount of coal reserves of the U-jeon consolidated Coal Mine is estimated at about thirty million metric tons.

  • PDF

Characteristics of downslope winds in the Liguria Region

  • Burlando, Massimiliano;Tizzi, Marco;Solari, Giovanni
    • Wind and Structures
    • /
    • v.24 no.6
    • /
    • pp.613-635
    • /
    • 2017
  • Strong downslope windstorms often occur in the Liguria Region. This part of North-Western Italy is characterised by an almost continuous mountain range along its West-East axis consisting of Maritime Alps and Apennines, which separate the Padan Plain to the North from the Mediterranean Sea to the South. Along this mountain range many valleys occur, frequently perpendicular to the mountain range axis, where strong gap flows sometimes develop from the top of the mountains ridge to the sea. In the framework of the European projects "Wind and Ports" and "Wind, Ports, and Sea", an anemometric monitoring network made up of 15 (ultra)sonic anemometric stations and 2 LiDARs has been realised in the three main commercial ports of Liguria. Thanks to this network two investigations are herein carried out. First, the wind climatology and the main statistical parameters of one Liguria valley have been studied through the analysis of the measurements taken along a period of 4 years by the anemometer placed at its southern exit. Then, the main characteristics of two strong gap flows that occurred in two distinct valley of Liguria are examined. Both these studies focus, on the one hand, on the climatological and meteorological characterisation of the downslope wind events and, on the other hand, on their most relevant quantities that can affect wind engineering problems.

Simulation of Air Quality Over South Korea Using the WRF-Chem Model: Impacts of Chemical Initial and Lateral Boundary Conditions (WRF-Chem 모형을 이용한 한반도 대기질 모의: 화학 초기 및 측면 경계 조건의 영향)

  • Lee, Jae-Hyeong;Chang, Lim-Seok;Lee, Sang-Hyun
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.639-657
    • /
    • 2015
  • There is an increasing need to improve the air quality over South Korea to protect public health from local and remote anthropogenic pollutant emissions that are in an increasing trend. Here, we evaluate the performance of the WRF-Chem (Weather Research and Forecasting-Chemistry) model in simulating near-surface air quality of major Korean cities, and investigate the impacts of time-varying chemical initial and lateral boundary conditions (IC/BCs) on the air quality simulation using a chemical downscaling technique. The model domain was configured over the East Asian region and anthropogenic MICS-Asia 2010 emissions and biogenic MEGAN-2 emissions were applied with RACM gaseous chemistry and MADE/SORGAM aerosol mechanism. Two simulations were conducted for a 30-days period on April 2010 with chemical IC/BCs from the WRF-Chem default chemical species profiles ('WRF experiment') and the MOZART-4 (Model for OZone And Related chemical Tracers version 4) ('WRF_MOZART experiment'), respectively. The WRF_MOZART experiment has showed a better performance to predict near-surface CO, $NO_2$, $SO_2$, and $O_3$ mixing ratios at 7 major Korean cities than the WRF experiment, showing lower mean bias error (MBE) and higher index of agreement (IOA). The quantitative impacts of the chemical IC/BCs have depended on atmospheric residence time of the pollutants as well as the relative difference of chemical mixing ratios between the WRF and WRF_MOZART experiments at the lateral boundaries. Specifically, the WRF_MOZART experiment has reduced MBE in CO and O3 mixing ratios by 60~80 ppb and 5~10 ppb over South Korea than those in the WRF-Chem default simulation, while it has a marginal impact on $NO_2$ and $SO_2$ mixing ratios. Without using MOZART-4 chemical IC, the WRF simulation has required approximately 6-days chemical spin-up time for the East Asian model domain. Overall, the results indicate that realistic chemical IC/BCs are prerequisite in the WRF-Chem simulation to improve a forecast skill of local air quality over South Korea, even in case the model domain is sufficiently large to represent anthropogenic emissions from China, Japan, and South Korea.