• Title/Summary/Keyword: South Korea Plateau

Search Result 29, Processing Time 0.028 seconds

Characteristics on sea level variations in the South Indian Ocean (남인도양의 해수면 변화 특성)

  • 윤홍주
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.6
    • /
    • pp.1094-1103
    • /
    • 2001
  • According to standard procedures as defined in the users handbook for sea level data processes, I was compared to Topex/Poseidon sea level data from the first 350days of mission and Tide Gauge sea level data from the Amsterdam- Crozet- Kerguelen region in the South Indian Ocean. The comparison improves significantly when many factors for the corrections were removed, then only the aliased oceanic tidal energy is removed by oceanic tide model(11) in this period. Making the corrections and smoothing the sea level data ()ver 60km along-track segments and the Tide Gauge sea level data for the time series results in the digital correlation and RMS difference between the two data of c=-0.12 and rms= 11.4cm, c=0.55 and rms=5.38cm, c=0.83 and rms=2.83cm, and c=0.24 and rms=6.72 for the Amsterdam, Crozet and Kerguelenplateau, and Kerguelen coast, respectively. It was also found that the Kerguelen plateau has a comparisons due to propagating signals(the baroclinic Rossby wave with velocity of -3.9 ~-4.2cm/sec, period of 167days and amplitude of 10cm) that introduce temporal lags(${\gamma}$: 10~30days) between the altimeter and tide gauge time series. The conclusion is that on timescales longer than about 10days the RMS sea level errors are less than or of the order of several centimeters and are mainly due to the effects of currents rather than the effects of stories(water temperature, density) and winds.

  • PDF

WRF-Based Short-Range Forecast System of the Korea Air Force : Verification of Prediction Skill in 2009 Summer (WRF 기반 공군 단기 수치 예보 시스템 : 2009년 하계 모의 성능 검증)

  • Byun, Ui-Yong;Hong, Song-You;Shin, Hyeyum;Lee, Ji-Woo;Song, Jae-Ik;Hahm, Sook-Jung;Kim, Jwa-Kyum;Kim, Hyung-Woo;Kim, Jong-Suk
    • Atmosphere
    • /
    • v.21 no.2
    • /
    • pp.197-208
    • /
    • 2011
  • The objective of this study is to describe the short-range forecast system of the Korea Air Force (KAF) and to verificate its performace in 2009 summer. The KAF weather prediction model system, based on the Weather Research and Forecasting (WRF) model (i.e., the KAF-WRF), is configured with a parent domain overs East Asia and two nested domains with the finest horizontal grid size of 2 km. Each domain covers the Korean peninsula and South Korea, respectively. The model is integrated for 84 hour 4 times a day with the initial and boundary conditions from National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) data. A quantitative verification system is constructed for the East Asia and Korean peninsula domains. Verification variables for the East Asia domain are 500 hPa temperature, wind and geopotential height fields, and the skill score is calculated using the difference between the analysis data from the NCEP GFS model and the forecast data of the KAF-WRF model results. Accuracy of precipitation for the Korean penisula domain is examined using the contingency table that is made of the KAF-WRF model results and the KMA (Korea Meteorological Administraion) AWS (Automatic Weather Station) data. Using the verification system, the operational model and parallel model with updated version of the WRF model and improved physics process are quantitatively evaluated for the 2009 summer. Over the East Aisa region, the parallel experimental model shows the better performance than the operation model. Errors of the experimental model in 500 hPa geopotential height near the Tibetan plateau are smaller than errors in the operational model. Over the Korean peninsula, verification of precipitation prediction skills shows that the performance of the operational model is better than that of the experimental one in simulating light precipitation. However, performance of experimental one is generally better than that of operational one, in prediction.

An Analysis of Wind Energy Resources using Synoptic Observational Data in North Korea (종관 바람 관측 자료를 이용한 북한 지역의 풍력자원 분석)

  • Yun, Jun-Hee;Seo, Eun-Kyoung;Park, Young-San;Kim, Hak-Seong
    • Journal of the Korean earth science society
    • /
    • v.31 no.3
    • /
    • pp.225-233
    • /
    • 2010
  • Wind power density distribution over the North Korea territory was investigated by using 30-year wind observations at 27 meteorological stations. The mean annual wind power density over North Korea turned out to be 58.6W/$m^2$, which corresponds to the wind power class of 1. The wind power density shows a seasonal variation, having the highest density in spring and the lowest in summer. In particular, the wind power density in summer is about a half of that in spring. The diurnal variation of the wind power density shows that the highest and lowest densities occur in the afternoon and between 3 and 6 am in local time, respectively. The most potential wind energy generation regions are the Gaema Plateau in the central region, the northeast part of Hamgyeongbuk-do, the south coast of Pyongan-do and the west coast of Hwanghae-do. The mean annual wind power density in Changjin is 151.2W/$m^2$, which is equivalent to the class of 3. In Ryongyon, the annual mean wind power density is 102.4W/$m^2$, which belongs to the class of 2.

Tectonic Implication of 40Ar/39Ar Hornblende and Muscovite Ages for Granitic Rocks in Southwestern Region of Ogcheon Belt, South Korea (옥천대 남서부지역에 분포하는 화강암류의$^{40}Ar/^{39}Ar$ 각섬석-백운모 연령에 대한 지구조적 의미)

  • 김용준;박재봉;박영석
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.69-76
    • /
    • 1998
  • $^{40}Ar/^{39}Ar$ analytical data of hornblende and muscovite separates from granitic rocks in southwestern region of Ogcheon belt shows fellowing tectonic implication, $^{40}Ar/^{39}Ar$ data of 5 samples yield apparent age spectra and $^{37}Ar_{ca}/^{39}Ar_k$ and $^{38}Ar_{CI}/^{39}Ar_k$ plateaus for more than 60% of the $^{39}Ar$ release. Except for HN-100, the $^{36}Ar/^{40}Ar$ versus $^{39}Ar/^{40}Ar$ corelalation diagrams indicate the presence of one distint line. Muscovite of sample PKJ-44 yield flate apparent age plateau for > 60% of the $^{39}Ar_k$ release. In the high temperature steps, the $^{37}Ar_{ca}/^{39}Ar_k$ values are irregular with a correlative increase in $^{38}Ar_{CI}/^{39}Ar_k$, suggesting some Ca and CI rich phase, tapped between the silicate sheet is being argon degassed. The $^{40}Ar/^{39}Ar$ total gas age and the high temperature age of HN-100 is 918.2 Ma and 1360 Ma, respectively. The former affectted by recystallized age of Daebo Orogeny, and the latter indicated age of hornblende closure temperature for cooling stage of amphibole xenolith in granite gneiss. Three rock types of Kwangju granites show about 165 Ma hornblende and muscovite ages with some degassed argon at low temperature steps. These ages of 4 samples indicate also recrystallized age by Daebo Orogeny. In $^{40}Ar/^{39}Ar$ mineral age, Rb/Sr whole age and K/Ar mineral age, discordant ages of southwestern region of Ogcheon belt suggesting cooling rates approaching 3~4$^{\circ}C$/m. y. Such slow cooling rates can be produced by uplift rate of 100m/m.y. or slightly slower than isothem-migration rate derived from the hornblende samples. We conclude that the strongest Orogeny and igneous activity of southwestern region of Ogcheon belt are middle proterozoic era (about 1360 Ma) and middle Jurassic period (about 165 Ma).

  • PDF

Preliminary Results of Marine Heat Flow Measurements in the Chukchi Abyssal Plain, Arctic Ocean, and Constraints on Crustal Origin (북극 척치 해저평원의 해양지열관측 초기결과와 지각기원에 대한 의미)

  • Kim, Young-Gyun;Hong, Jong Kuk;Jin, Young Keun;Jang, Minseok;So, Byung Dal
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.113-126
    • /
    • 2022
  • The tectonic history of the Chukchi Abyssal Plain in the Amerasia Basin, Arctic Ocean, has not been fully explored due to the harsh conditions of sea ice preventing detailed observation. Existing models of the tectonic history of the region provide contrasting interpretation of the timing of formation of the crust (Mesozoic to Cenozoic), crust type (from hyper-extended continental crust to oceanic crust), and formation process (from parallel/fan-shaped rifting to transformation faulting). To help determine the age of the oceanic crust, the geothermal gradient was measured at three stations in the south of abyssal plain at depth of 2,160-2,250 m below sea level. Heat flow measurement stations were located perpendicular to the spreading axis over a 40 km-long transect. In-situ thermal conductivity measurement, corrected by the laboratory test, gave observed marine heat flows of 55 to 61 mW/m2. All measurements were taken during Arctic expeditions in 2018 (ARA09C expedition) and 2021 (ARA12C expedition) by the Korean ice-breaking research vessel (IBRV) Araon. Given the assumption of oceanic crust, the results correspond to formation in the Late Cretaceous (Mesozoic). The inferred age supports the hypothesis of formation activated by the opening of the Makarov Basin during the Late Mesozoic-Cenozoic. This would make it contemporaneous with rifting of the Chukchi Border Land immediately east of the abyssal plain. The heat flow data indicate the base of the gas hydrate stability zone is located 332-367 m below the seafloor, this will help to identify the gas hydrate-related bottom simulating reflector in the future seismic survey, as already identified on the Chukchi Plateau. Further geophysical surveys, including heat flow measurements, are required to increase our understanding of the formation process and thermal mantle structure of the abyssal plain.

On the Persistence of Warm Eddies in the East Sea (동해 난수성 에디의 장기간 지속에 관하여)

  • JIN, HYUNKEUN;PARK, YOUNG-GYU;PAK, GYUNDO;KIM, YOUNG HO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.318-331
    • /
    • 2019
  • In this study, comparative analysis is performed on the long-term persisted warm eddies that were generated in 2003 (WE03) and in 2014 (WE14) over the East Sea using the HYCOM reanalysis data. The overshooting of the East Korea Warm Current (EKWC) was appeared during the formation period of those warm eddies. The warm eddies were produced in the shallow Korea Plateau region through the interaction of the EKWC and the sub-polar front. In the interior of the both warm eddies, a homogeneous water mass of about $13^{\circ}C$ and 34.1 psu were generated over the upper 150 m depth by the winter mixing. In 2004, the next year of the generation of the WE03, the amount of the inflow through the western channel of the Korea Strait was larger, while the inflow was lesser than its climatology during 2015 corresponding to the development period of the WE14. The above results suggest that the heat and salt are supplied in the warm eddies through the Tsushima Warm Current (TWC), however the amount of the inflow through the Korea Strait has negligible impact on the long-term persistency of the warm eddies. Both of the warm eddies were maintained more than 18 months near Ulleung island, while they have no common feature on the pathways. In the vicinity of the Ulleung basin, large and small eddies are continuously created due to the meandering of the EKWC. The long-term persisted warm eddies in the Ulleung Island seem to be the results of the interaction between the pre-existed eddies located south of the sub-polar front and fresh eddies induced by the meanderings of the EKWC. The conclusion is also in line with the fact that the long-term persisted warm eddies were not always created when the overshooting of the EKWC was appeared.

Tephrostratigraphy and Paleoenvironments of Marine Core in the Kita-Yamato Trough, East Sea/Japan Sea (동해 키타-야마토 해곡에서 채취된 시추코아의 테프라층서와 고환경)

  • Chun Jong-Hwa;Cheong Daekyo;Han Sang-Joon;Huh Sik;Yoo Hai-Soo
    • Economic and Environmental Geology
    • /
    • v.39 no.1 s.176
    • /
    • pp.83-93
    • /
    • 2006
  • The Kita-Yamato Trough is characterized by a SW-NE trending narrow graben between the Yamato Bank and the Kita-Yamato Bank in the central East Sea/Japan Sea (ES/JS). Core 20EEZ-1 was obtained in the flat summit of a small ridge from the southwest Kita-Yamato Trough. The sedimentation was mainly controlled by the supply of hemipelgic sediments and substantial tephras from explosive volcanic eruptions of the Quaternary volcanoes. The aim of this study is to reconstruct the tephrostratigraphy from the marine sediments collected from the Kita-Yamato Trough and to provide the atmosphere and ocean conditions during the explosive volcanic eruptions. According to the detailed tephrostratigraphy and lithofacies records, the core sediments were deposited during the last marine isotope stage (MIS) 7. The core consists of four lithofacies, idetified as, oxidized mud (OM), crudely laminated mud (CLM) and bioturbated mud (BM), interbedded with coarse-grained tephra (TP). The major element geochemistry and stratigraphic positions of seven tephra layers suggest that they originated from the Aira caldera in Kyushu area among the Japanese islands (AT tephra; 29.24 ka), unknown submarine volcano in the south Korea Plateau (SKP-I; MIS 3, SKP-II; MIS 4, SKP-IV; boundary between MIS 6 and MIS 5e, SKP-V; MIS 6, respectively), and the Baegdusan volcano in the Korean Peninsula (B-KY1; ca. 130 ka, B-KY2; ca. 196 ka). The absence of tephras originated trom Ulleung Island in core 20EEZ-l suggest that the tephras had not been transported into the Kita-Yamato Trough by atmosphere conditions during the eruptions. On the other hand, the B-KYI and the B-KY2 tephras derived from the Baegdusan volcano were founded in the Kita-Yamato Trough by a presence of prevailing westerly winds during the eruptions. Furthermore, the SKP tephras were characterized by the transport across the air-water interface, causing quickly thrust of raising eruption plumes from subaqueous explosive eruptions. Surface currents may play an important role in controlling the distribution patterns of the SKP tephras to distal areas. The tephrostratigraphic study in the Kita-Yamato Trough provides the important chronostratigraphic marker horizons and the detailed atmosphere and ocean conditions during the explosive eruptions.

Impact of East Asian Summer Atmospheric Warming on PM2.5 Aerosols (동아시아 지역의 여름철 온난화가 PM2.5 에어로졸에 미치는 영향)

  • So-Jeong Kim;Jae-Hee Cho;Hak-Sung Kim
    • Journal of the Korean earth science society
    • /
    • v.45 no.1
    • /
    • pp.1-18
    • /
    • 2024
  • This study analyzed the effect of warming on PM2.5 aerosol production in mid-latitude East Asia during June 2020 using PM2.5 aerosol anomalies, which were identified by incorporating meteorological and climate data into the Weather Research Forecasting model coupled with Chemistry (WRF-Chem) model. The decadal temperature change trend over a 30-year period (1991-2020) in East Asia showed that recent warming has been greater in summer than in winter. Summer warming in East Asia generated low and high pressure in the lower and upper troposphere, respectively, over China. The boundary between the lower tropospheric low and upper tropospheric high pressure sloped along the terrain from the Tibetan Plateau to Korea. The eastern China, Yellow Sea, and Korean regions experienced a convergence of warm and humid southwesterly airflows originating from the East China Sea with the development of a northwesterly Pacific high pressure. In June 2020, the highest temperatures were observed since 1973 in Korea. Meanwhile, enhanced warming in East Asia increased the production of PM2.5 aerosols that travelled long distances from eastern China to Korea. PM2.5 anomalies, which were derived solely by inputting meteorological and climatic data (1991-2020) into the WRF-Chem model and excluding emission variations, showed a positive distribution extending from eastern China to South Korea across the Yellow Sea as well as over the Pacific Northwest. Thus, the contribution of warming to PM2.5 aerosols in East Asia during June 2020 was more than 50%. In particular, PM2.5 aerosols were transported from eastern China to Korea through the Yellow Sea, where the warm and humid southwesterly airflows implied wet scavenging of sulfate but promoted nitrate production.

Tectonic Movement in the Korean Peninsula (I): The Spatial Distribution of Tectonic Movement Identified by Terrain Analyses (한반도의 지반운동 ( I ): DEM 분석을 통한 지반운동의 공간적 분포 규명)

  • Park, Soo-Jin
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.3 s.120
    • /
    • pp.368-387
    • /
    • 2007
  • In order to explain geomorphological characteristics of the Korean Peninsula, it is necessary to understand the spatial distribution of tectonic movements and its causes. Even though geomorphological elements which might have been formed by tectonic movements(e.g. tilted overall landform, erosion surface, river terrace, marine terraces, etc.) have long been considered as main geomorphological research topics in Korea, the knowledge on the spatial distribution of tectonic movement is still limited. This research aims to identify the spatial distributions of tectonic movement via sequential analyses of Digital Elevation Model(DEM). This paper first developed a set of terrain analysis techniques derived from theoretical interrelationships between tectonic uplifts and landsurface denudation processes. The terrain analyses used in this research assume that elevations along major drainage basin divides might preserve original landsurfaces(psuedo-landsuface) that were formed by tectonic movement with relatively little influence by denudation processes. Psuedo-landsurfaces derived from a DEM show clear spatial distribution patterns with distinct directional alignments. Lines connecting psuedo-landsufaces in a certain direction are defined as psuedo-landsurface axes, which are again categorized into two groups: the first is uplift psuedo-landsurface axes that indicate the axis of landmass uplift; and the second is denudational psuedo-landsurface axes that cross step-shaped pusedo-landsurfaces formed via surface denudation. In total, 13 axes of pusedo-landsurface are identified in the Korean Peninsula, which show distinct direction, length, and relative uplift rate. Judging from the distribution of psudo-landsurfaces and their axes, it is concluded that the Korean Peninsula ran be divided into four tectonic regions, which are named as the Northern Tectonic Region, Center Tectonic Region, Southern Tectonic Region, and East Sea Tectonic Region, respectively. The Northern Tectonic Region had experienced a regional uplift centered at the Kaema plateau, and the rate of uplift gradually decreased toward southern, western and eastern directions. The Center Tectonic Region shows an arch-shaped uplift. Its uplift rate is the highest along the East Sea and the rate decreases towards the Yellow sea. The Southern Tectonic Region shows an asymmetric uplift centered a line connecting Dukyu and Jiri Mountains in the middle of the region. The eastern side of the Southern Regions shows higher uplift rate than that of the western side. The East Sea Tectonic Region includes south-eastern coastal area of the peninsula and Gilju-Myeongchun Jigudae, which shows relatively recent tectonic movements in Korea. Since this research visualizes the spatial heterogeneity of long-term tenonic movement in the Korean peninsula, this would provide valuable basic information on long-term and regional differences of geomorphological evolutionary processes and regional geomorphological differences of the Korean Peninsula.