• 제목/요약/키워드: Source-range detector count rate

검색결과 3건 처리시간 0.015초

A practical subcritical rod worth measurement technique based on the improved neutron source multiplication method

  • Jiahe Bai;Chenghui Wan;Ser Gi Hong;Hongchun Wu
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1398-1406
    • /
    • 2024
  • The control rod worth is a key safety parameter required to be measured in commercial pressurized water reactors (PWRs). Conventionally, the control rod worth is measured after reaching the critical state, which occupies the considerable time in the zero-power physics test. In this study, an efficient control-rod worth measurement technique has been proposed based on the improved neutron-source multiplication method, which can be implemented with the source-range detector count rates in the subcritical states. Moreover, the noise reduction technique has been adopted to smooth the large fluctuation existing in the original signals. In order to verify the engineering performance of the proposed measurement technique, the measured source-range detector count rates during the rod withdrawal process before reaching critical state in a CNP1000 reactor have been employed. It demonstrated that almost all estimated results of control rod worth satisfy the engineering acceptance criteria, except one control rod with the relative difference over 10 %, which indicates the capability of the proposed method in estimating control rod worth.

Background reduction by Cu/Pb shielding and efficiency study of NaI(TI) detector

  • Ramadhan, Revink A.;Abdullah, Khairi MS.
    • Nuclear Engineering and Technology
    • /
    • 제50권3호
    • /
    • pp.462-469
    • /
    • 2018
  • The background spectrum of a $3^{{\prime}{\prime}}{\times}3^{{\prime}{\prime}}$ NaI(Tl) well-type scintillation SILENA detector was measured without shielding, in 6 cm thick lead shielding, and with 2 mm thick electrolytic copper covering the detector inside the lead shielding. The relative remaining background of the lead shield lined with copper was found to be ideal for low-level environmental radioactive spectroscopy. The background total count rate in the (20-2160 KeV) was reduced 28.7 times by the lead and 29 times by the Cu + Pb shielding. The effective reduction of background (1.04) by the copper mainly appeared in the energy range from X-ray up to 500 KeV, while for the total energy range the ratio is 1.01 relative to the lead only. In addition, a strong relation between the full-energy peak absolute efficiency and the detector well height was found using gamma-ray isotropic radiation point sources placed inside the detector well. The full-energy peak efficiency at a midpoint of the well (at 2.5 cm) is three times greater than that on the detector surface. The energy calibrations and the resolution of any single energy line are independent of the locations of the gamma source inside or outside of the well.

Measurement of the applicability of various experimental materials in a medically relevant reactor neutron source Part One: Material characteristics acting as a carrier for boron compounds during neutron irradiation

  • Ezddin Hutli ;Peter Zagyvai
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.2984-2996
    • /
    • 2023
  • A 100 kW thermal power pool-type light water reactor and Pu(Be) as a fast neutron source were used to determine the appropriate carrier for irradiating boron-containing samples with neutron beams. The tested materials (carriers) were subjected to neutron beams in the reactor's tangential channel. The geometrical arrangement of experimental facilities relative to the neutron beam trajectory, as well as the effect of sample thickness on the count rate, were investigated. The majority of the detectable charged particles emitted by the neutron beam's interaction with tested materials and the detector's detecting layer are protons (recoiled hydrogen) and particles generated in nuclear reactions (protons and alpha particles), respectively. Stopping and Range of Ions in Matter (SRIM) software was used to do theoretical calculations for the range of expected released particles in various materials, including human tissue. The results of measurement and calculation are in good agreement. According to experiments and theoretical calculations, the number of protons emitted by tissue-like materials may commit a dose comparable to that of boron capture reactions. Furthermore, the range of protons is significantly larger than that of alpha particles, which most probably changes dose distribution in healthy cells surrounding the tumor, which is undesirable in the BNCT approach.