• 제목/요약/키워드: Source location

검색결과 1,041건 처리시간 0.029초

Acoustic Emission Technique for Crack Source Location of Reinforced Concrete Beams Strengthened in Shear with CFRP (CFRP로 전단보강된 철근콘크리트 보에서 음향방출 특성을 이용한 균열 위치추정)

  • Lee, Young-Oh;Kim, Sun-Woo;Yun, Hyun-Do;Seo, Soo-Yeon;Choi, Chang-Sik;Choi, Ki-Bong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.322-325
    • /
    • 2006
  • This study was conducted to develop the crack location technique for CFRP reinforced concrete beam using AE method. To experimentally prove the crack source location made of four reinforced concrete beams strengthened in shear with CFRP. The results compared the real cracking location with the source location has perceived by AE monitoring, before it is appeared the primary crack by visual observation. So, This study used by a basic data in constructing the system of the failure warning at application.

  • PDF

The verification of Luminous flux of Reference illuminant for New light source by the calculated correction factor (보정계수 산출에 의한 신광원용 표준램프 광속의 검증)

  • Hwang, Myung-Keun;Shin, Sang-Wuk;Yi, Chin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제58권2호
    • /
    • pp.369-372
    • /
    • 2009
  • When measuring the luminous flux of a light source at the integrating sphere photometer, it can know the luminous flux to compare the standard lamp with the specimen lamp at the same location. But in case of PLS(plasma lighting system, microwave discharged lamp), that two lamps are cannot be the same location. If the reference illuminant and specimen lamp are cannot measure identical location, we should measure the variation of the luminous flux. For the outcome we can turn out a correction factor to revise and reflect it. But the better way is calibrate the specimen lamp locate the identical location of reference illuminant measured. In this thesis, we've test to find the correction factor for consider that change the measuring location. And it turns out the correction factor. From this, it presents the result to make a select for the reference illuminant which is against the illuminant type for newly produce.

Experimental Study on Microseismic Source Location by Dimensional Conditions and Arrival Picking Methods (차원 및 초동발췌방법에 따른 미소진동 음원위치결정 실험연구)

  • Cheon, Dae-Sung;Yu, Jeongmin;Lee, Jang-baek
    • Tunnel and Underground Space
    • /
    • 제29권4호
    • /
    • pp.243-261
    • /
    • 2019
  • Microseismic monitoring technologies have been recognized for its superiority over traditional methods and are used in domestic and overseas underground mines. However, the complex gangway layout of underground mines in Korea and the mixed structure of excavated space and rock masses make it difficult to estimate the microseismic propagation and to determine the arrival time of microseismic wave. In this paper, experimental studies were carried out to determine the source location according to various arrival picking methods and dimensional conditions. The arrival picking methods used were FTC (First Threshold Cross), Picking window, AIC (Akaike Information Criterion), and 2-D and 3-D source generation experiments were performed, respectively, under the 2-D sensor array. In each experiment, source location algorithm used iterative method and genetic algorithm. The iterative method was effective when the sensor array and source generation were the same dimension, but it was not suitable to apply when the source generation was higher dimension. On the other hand, in case of source location using RCGA, the higher dimensional source location could be determined, but it took longer time to calculate. The accuracy of the arrival picking methods differed according to the source location algorithms, but picking window method showed high accuracy in overall.

Extended Fault Location Algorithm Using the Estimated Remote Source Impedance for Parallel Transmission Lines

  • Ryu, Jeong-Hun;Kang, Sang-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2212-2219
    • /
    • 2018
  • This paper describes extended fault location algorithm using estimated remote source impedance. The method uses data only at the local end and the sequence current distribution factors for more accurate estimation. The proposed algorithm can respond to variation of the local and remote source impedance. Therefore, this method is especially useful for transmission lines interconnected to a wind farm that the source impedance varies continuously. The proposed algorithm is very insensitive to the variation in fault distance and fault resistance. The simulation results have shown the accuracy and effectiveness of the proposed algorithm.

Transmission Line Fault Location Algorithm Using Estimated Local Source Impedance (자기단 전원임피던스 추정을 이용한 송전선 고장점표정 알고리즘)

  • Kwon, Young-Jin;Kim, Su-Hwan;Kang, Sang-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제58권5호
    • /
    • pp.885-890
    • /
    • 2009
  • A fault location algorithm using estimated local source impedance after a fault is proposed in this paper. The method uses after fault data only at the local end. It uses the negative sequence current distribution factor for more accurate estimation. The proposed algorithm can keep up with the variation of the local source impedance. Therefore, the proposed algorithm especially is valid for a transmission line interconnected to a wind farm that the equivalent source impedance changes continuously. The performance of the proposed algorithm was verified under various fault conditions using the Simpowersystem of MATLAB Simulink. The proposed algorithm is largely insensitive to the variation in fault distance and fault resistance. The test results show a very high accurate performance.

Interfacial and Nondestructive Evaluation of Single Carbon Fiber/Epoxy Composites by Fiber Fracture Source Location using Acoustic Emission (Acoustic Emission 의 섬유파단 Source Location을 이용한 Carbon Fiber/Epoxy Composites의 계면특성 및 비파괴적 평가)

  • Kong, Jin-Woo;Kim, Jin-Won;Park, Joung-Man;Yoon, Dong-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.116-120
    • /
    • 2001
  • Fiber fracture is one of the dominant failure phenomena to determine total mechanical properties in composites. Fiber fracture locations were measured by optical microscopic method and acoustic emission (AE) as functions of matrix toughness and surface treatment by the electrodeposition (ED), and then two methods were compared. Two AE sensors were attached on the epoxy specimen and fiber fracture signals were detected with elapsed time. The interfacial shear stress (IFSS) was measured using tensile fragmentation test and AE system. In ED-treated case, the number of the fiber fracture measured by an optical method and AE was more than that of the untreated case. The signal number measured by AE were rather smaller than the number of fragments measured by optical method, since some fiber fracture signals were lost while AE detection. However, one-to-one correspondence between the x-position location by AE and real break positions by optical method was generally established well. The fiber break source location using AE can be a valuable method to measure IFSS for semi- or nontransparent matrix composites nondestructively (NDT).

  • PDF

Noise source localization using comparison between candidate signal and beamformer output in time domain (시간 영역의 빔출력과 후보 신호 사이의 비교를 통한 소음원의 위치 추정)

  • Kim, Koo-Hwan;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2010년도 추계학술대회 논문집
    • /
    • pp.543-543
    • /
    • 2010
  • The objective of this research is estimating the location of interested sound source by using the similarity between a beamformer output in time domain and the candidate signal. The waveform of beamformer output at the location of sound source is similar with the waveform emitted by that source. To estimate the location of sound source by using this feature, we define quantified similarity between candidate signal and beamformer output. The candidate signal describes the signal which is generated by interested source. In this paper, similarity is defined by four methods. The two methods use time vector comparison, and the other two methods use time-frequency map or linear prediction coefficients. To figure out the results and performance of localization by using similarities, we demonstrate two conditions. The one is when two pure tone sources exist and the other condition is when several bird sounds exist. As a consequence, inner product with two time-vectors and structural similarity with spectrograms can estimate the locations of interest sound source.

  • PDF

A Study on the 2-Dimensional AE Source Location Methods (이차원 AE음원 위치추정법에 관한 연구)

  • 장경환;김달중
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.419-422
    • /
    • 1995
  • In this paper, we propose two methods for AE source location on the material with unknown AE wave velocity. By this method, we can apply this method to arbitrary material of which properties are not known exactly. Also, in this paper, the mechanism of error generation in both methods are discussed and performances are compared by using computer simulation and experiments which uses a lead break as the AE source on the aluminum plate.

  • PDF

Direction and Location Estimating Algorithm for Sound Sources with Two Hydrophones in Underwater Environment (두 개의 하이드로폰을 이용한 수중 음원 방향 추정 및 위치 추정 알고리즘)

  • Shin, JaeWook;Song, Ju-Man;Lee, SeokYoung;Choi, Hyun-Taek;Park, PooGyeon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제19권8호
    • /
    • pp.676-681
    • /
    • 2013
  • For underwater vehicles, the use of sensors such as cameras and laser scanners is limited by the difference in environment compared to robots designed to work on dry land. In underwater environments, if use is made of sound signals, valuable information can be obtained. The most important application is the localization of underwater sound sources. The estimated location of a sound source can be used to control underwater robots or submarines. Thus, the purpose of this research is to estimate the source's direction and location in a noisy underwater environment. The direction of the sound source is obtained using two hydrophones. Furthermore, if we assume that the robot or sound source is moving, the location of the sound source is estimated using more than two estimated directions. The feasibility of the developed algorithm is examined by experiments in a water tank and in the ocean.

On Sensor Network Routing for Cloaking Source Location Against Packet-Tracing

  • Tscha, Yeong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제34권3B호
    • /
    • pp.213-224
    • /
    • 2009
  • Most of existing routing methods in wireless sensor networks to counter the local eavesdropping-based packet-tracing deal with a single asset and suffer from the packet-delivery latency as they prefer to take a separate path of many hops for each packet being sent. Recently, the author proposed a routing method, GSLP-w(GPSR-based Source-Location Privacy with crew size w), that enhances location privacy of the packet-originating node(i.e., active source) in the presence of multiple assets, yet taking a path of not too long. In this paper, we present a refined routing(i.e., next-hop selection) procedure of it and empirically study privacy strength and delivery latency with varying the crew size w(i.e., the number of packets being sent per path). It turns out that GSLP-w offers the best privacy strength when the number of packets being sent per path is randomly chosen from the range [$1,h_{s-b}/4$] and that further improvements on the privacy are achieved by increasing the random walk length TTLrw or the probability prw that goes into random walk(where, $h_{s-b}$ is the number of hops of the shortest path between packet-originating node s and sink b).