• 제목/요약/키워드: Source intensity

검색결과 958건 처리시간 0.022초

순시 인텐시티 측정 기법의 개발 및 응용 (Development and Application of Measuring Method of Instantaneous Intensity)

  • 이장우;김영종;안병하;이운섭
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.560-563
    • /
    • 1997
  • Sound intensity method is well known as a visualization technique of sound field and sound propagation in noise control. Sound intensity is a vector quantity that describes the magnitude and the direction of net flow of acoustic energy at a given position. The current measuring method is expensive and difficult to identify the noise source exactly. In this paper, we have studied the noise source identification and the characteristics of noise source of rotary compressor for air conditioner using complex sound intensity method. The new method for instantaneous sound intensity is also proposed and it is useful for transient state and steady state. The criteria of these states select auto correlation coefficient. The advantage, simplicity and economic attribution of this method are verified by analyzing the characteristics of noise source with instantaneous sound intensity compared to mean sound intensity.

  • PDF

순시 인텐시티 측정 기법의 개발 및 응용 (Development and Application of Measuring Method for Instantaneous Intensity)

  • 이장우;안병하
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.960-963
    • /
    • 2003
  • Sound intensity method is well known as a visualization technique of sound field and sound propagation in noise control. Sound intensity is a vector quantity that describes the magnitude and the direction of net flow of acoustic energy at a given position. The current measuring method is expensive and difficult to identify the noise source exactly. In this paper, we have studied the noise source identification and the characteristics of noise source of rotary compressor for air conditioner using complex sound intensity method. The new method for instantaneous sound intensity is also proposed and it is useful for transient state and steady state. The criteria of these state, select auto correlation coefficient. The advantage, simplicity and economic attribution of this method are verified by analyzing the characteristics of noise source with instantaneous sound intensity compared to mean sound intensity.

  • PDF

Two Dimensional Complex Sound Intensity를 이용한 압축기 소음원 규명에 관한 연구 (A Study on Noise Identification of Compressor Based on Two Dimensional Complex Sound Intensity)

  • 안병하;김영수
    • 한국정밀공학회지
    • /
    • 제17권1호
    • /
    • pp.83-92
    • /
    • 2000
  • Sound intensity method is well known as a visualization technique of sound field or sound propagation in noise control. Sound intensity or energy flux is a vector quantity which describes the amount and the direction of net flow of acoustic energy at a given position. Especially two dimensional sound intensity method is very useful in evaluating periodic characteristics and acoustic propagation mode of noise source. In this paper, we have studied the noise source Identification, acoustic sound field analysis, and characteristics of noise source of rotary compressor and scroll compressor for air conditioner using complex sound intensity method. Also we proposed a now method of time domain analysis which is used in evaluating of position of noise source in rotary and scroll compressor in this paper This paper presents the advantage, simplicity and economical efficiency of this method by analysing the characteristics of noise source with two dimensional complex sound intensity simultaneously.

  • PDF

복소음향인텐시티법을 이용한 HVAC의 소음원 검출 (Identification of Noise Source of the HVAC Using Complex Acoustic Intensity Method)

  • 양정직;이동주
    • 한국소음진동공학회논문집
    • /
    • 제20권11호
    • /
    • pp.1089-1096
    • /
    • 2010
  • The relation between the vibration induced from machinery and the radiated sound is complicated. Acoustic intensity method is widely used to obtain the accuracy of noise measurement and noise identification. In this study, as groundwork, the complex acoustic intensity method is performed to identify noise source and transmission path on different free space point source fields. As an industrial application, the complex acoustic intensity method is applied to HVAC to identify sound radiation characteristics in the near field. Experimental complex acoustic intensity method was applied to HVAC, it is possible to identify noise sources in complicated sound field characteristics which noise sources are related with each other, and certificate the validity of complex acoustic intensity. Especially, it can be seen that complex acoustic intensity method using both of active and reactive intensity is vital in devising a strategy for identification of noise. Also, the vector flow of acoustic intensity was investigated to identify sound intensity distributions and energy flow in the near field of HVAC.

CAM 곡선 개선에 의한 차량용 공조기의 소음 저감 평가 (Evaluation for Noise Reduction of the HVAC by Modification of CAM Curve)

  • 정재은;정창용;서범준;정운창;오재응
    • 한국소음진동공학회논문집
    • /
    • 제21권9호
    • /
    • pp.787-797
    • /
    • 2011
  • The noise in a vehicle is an important factor for customers purchasing a car. Particularly, reduction of the noise that is generated from HVAC(heating, ventilation and air conditioning) is very important since it has considerable effects on interior noise. In general, identification of noise source is crucial to reduce noise level. The complex acoustic intensity method is widely used to obtain the accurate measurement and identification of noise source. Therefore, in the previous study, noise source of HVAC was identified through experimental approach using the complex acoustic intensity method. In this study, we are intended to confirm reduced level of noise by comparing the result between before and after modification of cam curve that is based on identified noise source of HVAC. It is found out that noise source of HVAC are motor and cam area using the complex acoustic intensity method in the previous study. We performed experiments to compare noise level between before and after modification of cam curve. Especially, it can be seen that complex acoustic intensity method using both active and reactive intensity is vital in devising a strategy for comparison to noise level. Also, the vector flow of acoustic intensity was investigated to identify sound intensity distributions and energy flow in the near field of HVAC.

소음원 규명을 위한 음향 인텐시티 카메라 응용 (Application of Sound Intensity Camera for the Noise Source Analysis)

  • 이장명;배영욱
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.229-230
    • /
    • 2009
  • A method is suggested for the noise source identification using the sound intensity method. The suggested method does not need to install the grid using wire or thread during the sound intensity measurement for the noise source identification. It utilizes a camera to show the grid on the screen not installing the real grid for the sound intensity method.

  • PDF

무한 탄성 평판상의 기준점에 전달되는 진동인텐시티의 능동제어 (Active Control of Vibrational Intensity at a Reference Point in an Infinite, Elastic Plate)

  • 김기만
    • 한국소음진동공학회논문집
    • /
    • 제11권4호
    • /
    • pp.22-30
    • /
    • 2001
  • In this paper, active control of vibrational intensity at a reference point in an infinite, elastic plate was discussed. The plate is excised harmonically by a vibrating source, which has a vertical point force. The optimal condition of controller was investigated to minimize the vibrational intensity being transmitted from the vibrating source to a reference point. Hence the method of feedforward control was employed for the control strategy and then the cost function was evaluated to find the optimal control force. Three types of control force (Vertical force, Moment, and Coupling force (a set of vertical force and moment) ) and controller's positions were examined to define the optimal condition of the controller. The vibrational intensity at a reference point was found to be reduced down to a zero level, compared with the uncontrolled case. Especially maximum reduction of vibrational intensity was achieved when the controller was collinearly positioned between a vibrating source and a reference point.

  • PDF

소음원 분석에 의한 직기 구조물의 소음 특성 (Noise Characteristics of Rapier Loom by Noise Source Analysis)

  • 나혜중;전두환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.254-257
    • /
    • 2005
  • Locations and emission characteristics of noise source of rapier loom are important factors greatly. So, noise characteristics of rapier loom were investigated by the noise source identification as a part of experimental methods in this study. To identify the noise sources of the rapier loom sound intensity was measured under machine operation. In addition, frequency spectra of the sound at operator position was measured along with sound intensity to help identify the noise characteristics of the rapier loom. The results indicate that the sound power level occurs along the rapier loom.

  • PDF

공기 기인 소음 분석과 음향 인텐시티법을 이용한 타이어에 의한 실내 소음 예측 (Prediction of Interior Noise Caused by Tire Based on Sound Intensity and Acoustic Source Quantification)

  • 신광수;이상권;황성욱
    • 한국소음진동공학회논문집
    • /
    • 제23권4호
    • /
    • pp.315-323
    • /
    • 2013
  • Tire noise is divided into a road noise(structure-borne noise) and a pattern noise(air-borne noise). Whilst the road noise is caused by the structural vibration of the components on the transfer path from tire to car body, the pattern noise is generated by the air-pumping between tire and road. In this paper, a practical method to estimate the pattern noise inside a passenger car is proposed. The method is developed based on the sound intensity and airborne source quantification. Sound intensity is used for identifying the noise sources of tire. Airborne source quantification is used for estimating the sound pressure level generated by each noise source of a tire. In order to apply the airborne source quantification to the estimation of the sound pressure, the volume velocity of each source should be obtained. It is obtained by using metrics inverse method. The proposed method is successfully applied to the evaluation of the interior noises generated by four types of tires with different pattern each other.

복합진동계의 진동 인텐시티 능동 제어 (Active Control of Vibrational Intensity in a Compound Vibratory System)

  • 김기만
    • 한국정밀공학회지
    • /
    • 제19권6호
    • /
    • pp.109-118
    • /
    • 2002
  • The vibrational intensity and the dynamic response of a compound vibratory system had been controlled actively by means of a feedforward control method. A compound vibratory system consists of a flexible beam and two discrete systems - a vibrating source and a dynamic absorber. By considering the interactive motions between discrete systems and a flexible beam, the equations of motion for a compound vibratory system were derived using a method of variation of parameters. To define the optimal conditions of a controller the cost function, which denotes a time averaged power flow, was evaluated numerically. The possibility of reductions of both of vibrational intensity and dynamic response at a control point located at a distance from a source were fecund to depend on the positions of a source, a control point and a controller. Especially the presence of a dynamic absorber gives the more reduction on the dynamic response but the less on the vibrational intensity than those without a dynamic absorber.