• Title/Summary/Keyword: Source and sink terms

Search Result 45, Processing Time 0.026 seconds

Sink Location Service via Circle Path for Geographic Routing in Wireless Sensor Networks (무선 센서 네트워크에서 위치 기반 라우팅을 위한 원형 경로 기반 싱크 위치 서비스)

  • Park, Ho-Sung;Lee, Jeong-Cheol;Oh, Seung-Min;Yim, Young-Bin;Kim, Sang-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6A
    • /
    • pp.585-593
    • /
    • 2010
  • Geographic routing has been considered as an efficient, simple, and scalable routing protocol for wireless sensor networks since it exploits pure local location information instead of global topology information to route data packets. Geographic routing requires the sources nodes to be aware of the location of sinks. Most existing geographic routing protocols merely assume that source nodes are aware of the locations of sinks. How can source nodes get the locations of sinks was not addressed in detail. In this paper, we propose a sink location service via circle path for geographic routing in wireless sensor networks. In this scheme, a sink sends a Sink Location Announcement (SLA) message along a circle path, and a source node sends a Sink Location Query (SLQ) message along a straight path that certainly passes through the circle path. By this way we can guarantee the SLQ path and SLA path have at least one crossing point. The node located on the crossing point of the two paths informs the source node the sink location. This procedure can correctly work in any irregular profile sensor networks such as network that has holes or irregular shape by some rules. Simulation results show that our protocol is superior to other protocols in terms of energy consumption and control overhead.

Energy-Efficient Division Protocol for Mobile Sink Groups in Wireless Sensor Network (무선 센서 네트워크에서 이동 싱크 그룹의 분리를 지원하기 위한 라우팅 프로토콜)

  • Jang, Jaeyoung;Lee, Euisin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Communications for mobile sink groups such as rescue teams or platoons bring about a new challenging issue for handling mobility in wireless sensor networks. To do this, many studies have been proposed to support mobile sink groups. When closely looking at mobile sink groups, they can be divided into (multiple) small groups according to the property of applications. For example, a platoon can be divided into multiple squads to carry out its mission in the battle field. However, the previous studies cannot efficiently support the division of mobile sink groups because they do not address three challenging issues engendered by the mobile sink group division. The first issue is to select a leader sink for a new small mobile sink group. The efficient data delivery from a source to small mobile sink groups is the second issue. Last, the third issue is to share data between leader sinks of small mobile sink groups. Thus, this paper proposes a routing protocol to efficiently support the division of mobile sink groups by solving the three challenging issues. For the first issue, the proposed protocol selects a leader sink of a new small mobile sink group which provide a minimum summation of the distance between the new leader sink and the previous leader sink and the distance from the new leader sink to all of its member sinks. For the efficient data delivery from a source to small mobile sink groups in the second issue, the proposed protocol determines the path to minimize the data dissemination distance from source to small mobile sink group by calculating with the location information of both the source and the leader sinks. With regard to the third issue, the proposed protocol exploits member sinks located among leader sinks to provide efficient data sharing among leaders sinks by considering the location information of member sinks. Simulation results verified that the proposed protocol is superior to the previous protocol in terms of the energy consumption.

Simple Relay Selection for Wireless Network Coding System

  • Kim, Jang-Seob;Lee, Jung-Woo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.310-313
    • /
    • 2011
  • Broadcasting nature of wireless communications makes it possible to apply opportunistic network coding (OPNC) by overhearing transmitted packets from a source to sink nodes. However, it is difficult to apply network coding to the topology of multiple relay and sink nodes. We propose to use relay node selection, which finds a proper node for network coding since the OPNC alone in the topology of multiple relays and sink nodes cannot guarantee network coding gain. The proposed system is a novel combination of wireless network coding and relay selection, which is a key contribution of this paper. In this paper, with the consideration of channel state and potential network coding gain, we propose relay node selection techniques, and show performance gain over the conventional OPNC and a channel-based selection algorithm in terms of average system throughput.

  • PDF

An Operation Scheme of Local Sink in Geographic Routing for Wireless Sensor Networks (무선 센서 네트워크를 위한 위치 기반 라우팅에서 로컬 싱크 운영 기법)

  • Lee, Eui-Sin;Park, Soo-Chang;Jin, Min-Sook;Park, Ho-Sung;Kim, Tae-Hee;Kim, Sang-Ha
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.3
    • /
    • pp.201-205
    • /
    • 2009
  • This paper addresses issues to efficiently collect and aggregate data of sources within a local and adjacent region in geographic routing for wireless sensor networks. We first introduce the concept of a local sink which collects and aggregates data form source nodes in the region and delivers the aggregated data to a global sink. We also design a model to determine an optimal location of the local sink and propose a mechanism to collect data through the local sink. Simulation results show that the proposed mechanism with the local sink is more efficient in terms of the energy and the data delivery ratio than the existing mechanism without the local sink in a geographic routing.

THERMAL DIFFUSION AND RADIATION EFFECTS ON UNSTEADY MHD FREE CONVECTION HEAT AND MASS TRANSFER FLOW PAST A LINEARLY ACCELERATED VERTICAL POROUS PLATE WITH VARIABLE TEMPERATURE AND MASS DIFFUSION

  • Venkateswarlu, M.;Ramana Reddy, G.V.;Lakshmi, D.V.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.3
    • /
    • pp.257-268
    • /
    • 2014
  • The objective of the present study is to investigate thermal diffusion and radiation effects on unsteady MHD flow past a linearly accelerated vertical porous plate with variable temperature and also with variable mass diffusion in presence of heat source or sink under the influence of applied transverse magnetic field. The fluid considered here is a gray, absorbing/emitting radiation but a non-scattering medium. At time t > 0, the plate is linearly accelerated with a velocity $u=u_0t$ in its own plane. And at the same time, plate temperature and concentration levels near the plate raised linearly with time t. The dimensionless governing equations involved in the present analysis are solved using the closed analytical method. The velocity, temperature, concentration, skin-friction, the rate or heat transfer and the rate of mass transfer are studied through graphs in terms of different physical parameters like magnetic field parameter (M), radiation parameter (R), Schmidt parameter (Sc), Soret number (So), Heat source parameter (S), Prandtl number (Pr), thermal Grashof number (Gr), mass Grashof number (Gm) and time (t).

Dimethylsulfide (DMS) in the Coastal Areas of the Cheju Island, Korea (제주도 연안해역을 중심으로 한 DMS 농도의 관측)

  • 김기현;이강웅;허철구;강창희
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.2
    • /
    • pp.161-170
    • /
    • 1997
  • The concentrations of dimethylsulfide (DMS) were determined using samples collected from a station located at Kosan, Cheju Island during two field campaigns held in December 1996 and January 1997. The atmospheric DMS concentrations measured at 6-hr intervals during the entire campaign periods, after excluding a few extreme values, spanned in the range of 14 to 410 pptv with mean and 1 SD value of 127 $\pm$ 94 pptv (N=42). Between two month periods during which the field campaigns were conducted, a notable reduction in DMS levels was observed which was comparable to the dramatic shift in air temperature. A considerable difference was also noted in DMS levels, when data were grouped by day/night basis. The cause of unexpected, high day-to-night DMS ratios is best explained in terms of high efficiency of daytime source processes relative to low efficiency of nighttime sink processes due to the characteristics of the study location. The surface water DMS of the study site, although scarcely measured, also behaved similarly to its atmospheric counterpart with its range from 0.3 to 19 nM (N=11). When correlation analysis was conducted between the atmospheric DMS concentration and other concurrently determined parameters, significant correlations were observed from most basic meteorological parameters such as windspeed, relative humidy, and air temperature. However, the existence of "not-so-strong" correlations between air temperature and DMS concentrations relative to other ones indicated that the effect of temperature on DMS behavior must be reflected in more complicated manners at the study site. The sea-to-air flux of DMS was approximated through an application of the mass-balance flux calculation method of Wylie and de Mora (1996) under the assumption that sink mechanism within the marine boundary layer is in steady-state condition with its counterpart, source mechanism. Based on this estimation method, we reached a conclusion that oceanic DMS emitted from the southwest sea of the Korean Peninsula can amount to approximately 9 $\sim$ 36 Gg S $yr^{-1}$.$yr^{-1}$.

  • PDF

A Hexagon Model-based Efficient Beacon Scheduling Approach for Wireless Sensor Networks

  • Lee, Taekkyeun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.9
    • /
    • pp.43-50
    • /
    • 2018
  • In this paper, we propose a hexagon model-based efficient beacon frame scheduling approach for wireless sensor networks. The existing beacon frame scheduling approaches use a lot of slots and subslots for the beacon frame scheduling. Thus, the data from source nodes are not efficiently delivered to a sink node. Also in case a sink node needs to broadcast a beacon frame to the nodes in the network, delivering the beacon frame to the network nodes is not efficient as well. Thus, to solve the problem, we use a hexagon model to find the number of slots and subslots for the beacon frame scheduling. By using them for the beacon frame scheduling, the proposed approach performs better than other approaches in terms of the data transmission delay, the number of received data, the beacon transmission delay and the number of relaying the beacon frames.

Enhanced Hybrid Routing Protocol for Load Balancing in WSN Using Mobile Sink Node

  • Kaur, Rajwinder;Shergi, Gurleen Kaur
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.3
    • /
    • pp.268-277
    • /
    • 2016
  • Load balancing is a significant technique to prolong a network's lifetime in sensor network. This paper introduces a hybrid approach named as Load Distributing Hybrid Routing Protocol (LDHRP) composed with a border node routing protocol (BDRP) and greedy forwarding (GF) strategy which will make the routing effective, especially in mobility scenarios. In an existing solution, because of the high network complexity, the data delivery latency increases. To overcome this limitation, a new approach is proposed in which the source node transmits the data to its respective destination via border nodes or greedily until the complete data is transmitted. In this way, the whole load of a network is evenly distributed among the participating nodes. However, border node is mainly responsible in aggregating data from the source and further forwards it to mobile sink; so there will be fewer chances of energy expenditure in the network. In addition to this, number of hop counts while transmitting the data will be reduced as compared to the existing solutions HRLBP and ZRP. From the simulation results, we conclude that proposed approach outperforms well than existing solutions in terms including end-to-end delay, packet loss rate and so on and thus guarantees enhancement in lifetime.

Changes in Sink capacity and Source Activity of Rice Cultivars in Response to Shift of Heading date (벼 품종들의 출수기에 따른 동화산물 생산능력 및 수용기관 크기 변화)

  • Lee, Sok-Young;Kwon, Yong-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.2
    • /
    • pp.260-267
    • /
    • 1995
  • In temperate zone planting rice at different date subjects the Crop to different climatic condition. The present study aimed at comparison of the change in source-sink relationship of the Japonica(J) and that of IndicaxJaponica(I$\times$J) type rice cultivars caused by shift of heading date. Two J- and two I$\times$J-type cultivars were made to head on August 16, August 26, and September 5. Sink capacity was changed by shift of heading date in different mode between the types of cultivars. In both types major determinant of sink capacity was number of effective tillers, and the number of spikelets per panicle was the minor. In J-type earlier planting/heading was beneficial to increased panicle numbers and this was due mainly to a larger diurnal difference in temperature. I$\times$J-type cultivars favored a higher daily mean temperature to increase the sink capacity. The ability of source at heading, in terms of leaf area per panicle, chlorophyll content per spiklet, photosynthetic ability of leaves per unit area at 25$\^{\circ}C$, carbohydrate and N contents of leaves, was not so different among different heading dates in both types. However, the source activity was governed principally by temperature during grain filling. The J-type cultivars headed on Sept. 5 and I$\times$J-type cultivars headed later than August 16 could not have had sufficient source activity in grain filling due to lower temperature.

  • PDF

Simulation of an Absorption Power Cycle for Maximizing the Power Output of Low-Temperature Geothermal Power Generation (저온 지열발전의 출력 극대화를 위한 흡수식 동력 사이클의 시뮬레이션)

  • Baik, Young-Jin;Kim, Min-Sung;Chang, Ki-Chang;Lee, Young-Soo;Yoon, Hyung-Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.145-151
    • /
    • 2010
  • In this study, an absorption power cycle, which can be used for a low-temperature heat source driven power cycle such as geothermal power generation, was investigated and optimized in terms of power by the simulation method. A steady-state simulation model was adopted to analyze and optimize its performance. Simulations were carried out for the given heat source and sink inlet temperatures, and the given flow rates were based on the typical power plant thermal-capacitance-rate ratio. The cycle performance was evaluated for two independent variables: the ammonia fraction at the separator inlet and the maximum cycle pressure. Results showed that the absorption power cycle can generate electricity up to about 14 kW per 1 kg/s of heat source when the heat source temperature, heat sink temperature, and thermal-capacitance-rate ratio are $100^{\circ}C$, $20^{\circ}C$, and 5, respectively.