• Title/Summary/Keyword: Source Generator

Search Result 560, Processing Time 0.03 seconds

Practically Secure and Efficient Random Bit Generator Using Digital Fingerprint Image for The Source of Random (디지털 지문 이미지를 잡음원으로 사용하는 안전하고 효율적인 난수 생성기)

  • Park, Seung-Bae;Joo, Nak-Keun;Kang, Moon-Seol
    • The KIPS Transactions:PartD
    • /
    • v.10D no.3
    • /
    • pp.541-546
    • /
    • 2003
  • We present a random bit generator that uses fingerprint image as the source of random, and the random bit generator is the first generator in the world that uses biometric information for the source of random in the world. The generator produces, on the average, 9,334 bits a fingerprint image in 0.03 second, and the produced bit sequence passes all 16 statistical tests that are recommended by NIST for testing the randomness.

A Design of Homopolar Generator System Considering Instability with Negative Characteristics Load (부성부하와의 발진을 고려한 단극발전기 시스템 설계)

  • Kim, In-Soo;Seong, Se-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.449-451
    • /
    • 2008
  • This paper studies the instability between homopolar generator and constant power load with negative impedance characteristics, provides the design method of homopolar generator system which overcomes the instability. In case of magnitude and phase of impedance of source and load mismatch, control instability of source can occur. For the safety of phase of load impedance, the gain of P, I controller with sufficient phase margin is applied through analysis on the simulation model of generator system, and the gain limit of load impedance is ensured by limitation of the gain margin of generator system. The stability of power system can be increased by considering and analyzing the impedance of source and load.

  • PDF

A Study of Analysis for Small Buried Type Permanent Magnet Synchronous Generator Considering Armature Resistance Effect (전기자 저항의 영향을 고려한 소형 영구자석 매입형 동기발전기 정상상태 특성 해석 연구)

  • Hong, Sun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.380-383
    • /
    • 2012
  • Small permanent magnet generator can be used not only as an emergency power source but also an exciting power source of generator for small generating systems because it does not need the external exciting power source. Especially the air-gap flux density of the buried PM synchronous generator can be increased more than that of the permanent magnet. In this study, the analysis of the small buried type PM synchronous generator is performed. From the phasor diagram considering armature resistance for exact analysis, analytic equations are induced and the efficiency, developed voltage, load current are calculated. The experimental results are compared with the calculated results for the appropriateness.

Acoustical characteristics of prototype mechanical white noise generator as an underwater sound source (시험 제작한 기계식 백색소음기 수중음원의 음향적 특성)

  • Shin, Hyeon-Ok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.3
    • /
    • pp.244-251
    • /
    • 2014
  • This paper describes a prototype mechanical white noise generator has a source level of more than 170.0 dB (re $1{\mu}Pa$ at 1 m) at the frequency range of 10 Hz to 100 kHz. The results of performance evaluation of the generator are as follows. The average source level of the generator measured by a step of $15^{\circ}$ in horizontal (0 to $360^{\circ}$, 25 points) was 185.2 (SD (standard deviation): 2.3) dB (re $1{\mu}Pa$ at 1 m). The maximum and minimum source levels were appeared at the frequency range of 2.5 to 5.0 kHz and around 100 kHz, respectively. The average source levels at $0^{\circ}$, $90^{\circ}$, $180^{\circ}$ and $270^{\circ}$ were 162.9 (SD: 10.6), 168.4 (SD: 10.0), 162.1 (SD: 9.1) and 166.5 (SD: 11.1) dB (re $1{\mu}Pa$ at 1 m). The average source level measured by a step of $30^{\circ}$ in vertical was 184.9 (SD: 2.2) dB (re $1{\mu}Pa$ at 1 m). The relative maximum variation width of the source levels in horizontal and in vertical measurement were less than 7.0 dB and 1.0 dB, respectively.

Unified Controller for 100kVA Emergency Generator (100kV급 비상발전기용 통합제어기)

  • Jeong, C.Y.;Cho, J.G.;Baek, J.W.;Lee, J.J.;Kim, Y.J.;Yoo, D.W.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2801-2803
    • /
    • 1999
  • An unified controller for emergency generator is presented to control AVR and Governor and l00kVA power conditioner. This controller is operated to compensate current harmonics and asymmetries caused by nonlinear load and unbalance loads. The power conditioner shapes the source current sinusoidal in phase with source voltage and allows the generator to maximum power even to the single phase load. Also this power conditioner allows that three phase generator synchronizes with single phase main source and load sharing. An l00kVA generator system was built and the unified controller is realized with DSP(TMS320C32PCMA). Experimental results for many load conditions are presented to verify the performance of the unified controller.

  • PDF

A Study on Optimization of Compact High-voltage Generator Based on Magnetic-core Tesla Transformer

  • Jeong, Young-Kyung;Youn, Dong-Gi;Lee, Moon-Qee
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1349-1354
    • /
    • 2014
  • This paper presents a compact and portable high-voltage generator based on magnetic-core Tesla transformer for driving an UWB high power electromagnetic source. In order to optimize the performance of the high-voltage generator, a novel open-loop cylindrical magnetic-core adopting the quad-division lamination structure is proposed and manufactured. The designed high-voltage generator using the proposed magnetic core has a battery-powered operation and compact size of $280mm{\times}150mm$ in length and diameter, respectively. The high-voltage generator can produce a voltage pulse waveform with peak amplitude of 450 kV, a rise time of 1.5 ns, and pulse duration of 2.5 ns at the 800 V input voltage.

Insulation Gas to characterize the rise-time of an Utra-fast Marx generator (절연 가스에 따른 초고속 Marx generator의 상승 시간 특성)

  • Doo, Jin-Suk;Bang, Jung-Ju;Kim, Kwang-Yong;Hwang, Sun-Mook;Seo, Yu-Jin;Huh, Chang-Su
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1396_1397
    • /
    • 2009
  • Recently, there has been considerable interest in electromagnetic pulse (EMP) source for no lethal directed energy weaponry applications. The compactness of the Marx generator, coupled with its ability to be powered by battery technology, makes it a viable handled impulse source. The marx generator has 2 stages. Each stage was constructed one charging capacitor, two electrodes and one charging resistor. A inductance structure is used in order to improve the switching performances fo the whole generator. The experiments of rise time in pure gas and mixtures of gases were described. The experimental results show that the rise time characteristics of the marx generator can be controlled through varying insulation gas.

  • PDF

Research on Transmission Line Design for Efficient RF Power Delivery to Plasma (전송선로를 이용한 플라즈마 전력 전달 연구)

  • Park, In Yong;Lee, Jang Jae;Kim, Si-Jun;Lee, Ba Da;Kim, Kwang Ki;Yeom, Hee Jung;You, Shin Jae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.2
    • /
    • pp.6-10
    • /
    • 2016
  • In RF plasma processing, when the plasma is generated, there is the difference of impedance between RF generator and plasma source. Its difference is normally reduced by using the matcher and the RF power is transferred efficiently from the power generator to the plasma source. The generated plasma has source impedance that it can be changed during processing by pressure, frequency, density and so on. If the range of source impedance excesses the matching range of the matcher, it cannot match all value of the impedance. In this research, we studied the elevation mechanism of the RF power delivery efficiency between RF generator to the plasma source by using the transmission line and impedance tuning of the plasma source. We focus on two plasma sources (capacitive coupled plasma (CCP), inductive coupled plasma (ICP)) which is most widely used in industry recently.

Study on Development & Implementation of Online Generator Frequency Response Test (On-line 발전기 주파수응답시험 개발 및 적용에 관한 연구)

  • Oh, Chang-Soo;Kwak, Wol-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.48-49
    • /
    • 2006
  • Recently, Importance of Generator's Active/Reactive Power Control Capability is highly emphasized for prevention of Large Blackout. Especially, Generator's frequency Response Capability is important to the Power System Frequency Stability. This paper deals with the Development & Implementation of Each Generator Frequency Response Capability Test via the Injection of Artificial Frequency to the Online Generator. Actual On-line Generator's frequency Response Test was successfully implemented to 13 Generator having various fuel source.

  • PDF

OPTIMIZATION OF OPERATION PARAMETERS OF 80-KEV ELECTRON GUN

  • Kim, Jeong Dong;Lee, Yongdeok;Kang, Heung Sik
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.387-394
    • /
    • 2014
  • A Slowing Down Time Spectrometer (SDTS) system is a highly efficient technique for isotopic nuclear material content analysis. SDTS technology has been used to analyze spent nuclear fuel and the pyro-processing of spent fuel. SDTS requires an external neutron source to induce the isotopic fissile fission. A high intensity neutron source is required to ensure a high for a good fissile fission. The electron linear accelerator system was selected to generate proper source neutrons efficiently. As a first step, the electron generator of an 80-keV electron gun was manufactured. In order to produce the high beam power from electron linear accelerator, a proper beam current is required form the electron generator. In this study, the beam current was measured by evaluating the performance of the electron generator. The beam current was determined by five parameters: high voltage at the electron gun, cathode voltage, pulse width, pulse amplitude, and bias voltage at the grid. From the experimental results under optimal conditions, the high voltage was determined to be 80 kV, the pulse width was 500 ns, and the cathode voltage was from 4.2 V to 4.6 V. The beam current was measured as 1.9 A at maximum. These results satisfy the beam current required for the operation of an electron linear accelerator.