• Title/Summary/Keyword: Sound waves

Search Result 273, Processing Time 0.022 seconds

Variation in Echolocation and Prey-capture Behavior of Rhinolophus ferrumequinum during Foraging Flight (관박쥐(Rhinolophus ferrumequinum)의 먹이포획 과정에 대한 행동 및 반향정위 변화)

  • Chung, Chul Un;Kim, Sung Chul;Jeon, Young Shin;Han, Sang Hoon
    • Journal of Environmental Science International
    • /
    • v.26 no.6
    • /
    • pp.779-788
    • /
    • 2017
  • In this study, we analyzed the changes in the echolocation and prey-capture behavior of the horseshoe bat Rhinolophus ferrumequinum from search phase to capture time. The experiment was conducted in an indoor free-flight room fitted with an ultra-high-speed camera. We found that the bats searched for food while hanging from a structure, and capturing was carried out using the flight membrane. In addition, it was confirmed that the mouth and uropatagium were continuously used in tandem during the capturing process. Furthermore, using Constant Frequency (CF), we confirmed that the prey catching method reflected the wing morphology and echolocation pattern of R. ferrumequinum. The echolocation analysis revealed that the pulse duration, pulse interval, peak frequency, start-FM-bandwidth, and CF duration decreased as the search phase approached the terminal phase. Detailed analysis of echolocation pulse showed that the end-FM bandwidth, which increases as it gets nearer to the capture time of prey, was closely related to the accurate grasp of the location of an insect. At the final moment of prey capture, the passive listening that stopped the divergence of the echolocation was identified; this was determined to be the process of minimizing the interruption from the echo of the echolocation call emitted from the bat itself and sound waves emitted from the prey.

Acoustothermal Heating of Polydimethylsiloxane Microfluidic Systems and its Applications (Polydimethylsiloxane 기반 미세유체시스템의 음향열적 가열 및 응용)

  • Sung, Hyung Jin;Ha, Byunghang;Park, Jinsoo;Destgeer, Ghulam;Jung, Jin Ho
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.1
    • /
    • pp.57-61
    • /
    • 2016
  • We report a finding of fast(exceeding 2,000 K/s) heating of polydimethylsiloxane(PDMS), one of the most commonly-used microchannel materials, under cyclic loadings at high(~MHz) frequencies. A microheater was created based on the finding. The heating mechanism utilized vibration damping of sound waves, which were generated and precisely manipulated using a conventional surface acoustic wave(SAW) microfluidic system, in PDMS. The penetration depths were measured to range from $210{\mu}m$ to $1290{\mu}m$, enough to cover most microchannel heights in microfluidic systems. The energy conversion efficiency was SAW frequency-dependent and measured to be the highest at around 30 MHz. Independent actuation of each interdigital transducer(IDT) enabled independent manipulation of SAWs, permitting spatiotemporal control of temperature on the microchip. All the advantages of this microheater facilitated a two-step continuous flow polymerase chain reaction(CFPCR) to achieve the billion-fold amplification of a 134 bp DNA amplicon in less than 3 min. In addition, a technique was developed for establishing dynamic free-form temperature gradients(TGs) in PDMS as well as in gases in contact with the PDMS.

Acoustic Characteristics of Wedge-shaped Anechoic Tiles with Different Wedge-apex Angles (꼭지각이 다른 쐐기형 무반향 타일의 음향특성)

  • 김성기;이강일;윤석왕
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.5-11
    • /
    • 2001
  • Acoustic characteristics of the wedge-shaped anechoic tiles, used as absorbing lining materials for an anechoic water tank, were investigated for different wedge-apex angles. The anechoic tile base has the dimensions of 400mm x 385mm x 15.5mm. In order to investigate anechoic effect, the wedge-apex angles 30° and 60° were selected by using a ray-tracing method. The reflection loss of the anechoic tiles with and without wedges were experimentally studied at normal incident sound waves in water. In this experiment, the reflection loss of wedge-shaped anechoic tiles with the optimum wedge-apex angle 30° is larger than one with the angle 60° and one without wedges. The experimental results show that the wedge-shaped anechoic tiles with the wedge-apex angle 30°, optimized by using ray-tracing method, turn out better absorbing lining materials of an anechoic water tank.

  • PDF

A Study on the Development of Educational Modules for Aids to Navigation Using the Aid to Navigation Simulator (항로표지 시뮬레이션 시스템을 활용한 항로표지 교육모듈 개발에 관한 연구)

  • Jeong, Woo-Lee;Jo, Gi-Jong;Moon, Serng-Bae
    • Journal of Navigation and Port Research
    • /
    • v.43 no.6
    • /
    • pp.361-368
    • /
    • 2019
  • Aid to Navigation (AtoN) is the artificial facilities to facilitate the ship's safe navigation using light, shape, color, sound, and radio waves. IALA has developed and operated the educational course for expert groups for the design, deployment, and management of AtoN. Also, maritime educational institutes have operated various educational courses for safe navigation through the ship's operation and ECDIS curriculum for seafarers. However, education using the AtoN Simulator System is needed to prevent marine accidents caused by misunderstanding of the AtoN according to various topographical, environmental, and maritime traffic environments. In this study, the existing ship handling simulator and AtoN simulator were applied to develop educational modules for accurate understanding and application of AtoN in various environments, enhancing the quality of education from the existing theoretical point of view and improving practical use to maximize educational efforts.

A Study on The transducer of acoustic sensor to be Single-mode FBG using Hopper Type WDM be in the Making (Hopper type WDM을 이용한 단일모드 FBG(Fiber Bragg Grating)음향센서 트랜스듀서 개발연구)

  • Kim, Kyung Bok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.256-263
    • /
    • 2014
  • We have designed and made three kinds of FBG(Fiber Bragg Grating) Acoustic Transducer using Hopper type WDM on the use of recently developed FBG in Korea. The newly designed three kinds of FBG Acoustic Transducer using Hopper type WDM have an excellent merit of practical use with simple structure of sensors arm as well as the merit with existing fiber sensors. It was possible to detect sound waves in the range of 10 Hz to 18 kHz through the newly designed three kinds of FBG Acoustic Transducer and also, possible to detect its signal within the maximum range of 8.6 m by the use of most suitable resonance condition of the transducer. Especially, we can expect the utilization of low-frequency signal detection instead of existing acoustic sensor in the environment of electric noise and inferior condition. Furthermore, they can be developed as the high-sensibility and multi-point signal detection system through the sensor array system.

Performance Evaluation of Seawater-Exchanging Breakwater Using Helmholtz Resonator (헤름홀츠 공명장치를 이용한 해수교환형 방파제의 성능평가)

  • 조일형
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.2
    • /
    • pp.89-99
    • /
    • 2001
  • In the present paper, Helmholtz resonator, which is widely used as a sound-amplification device, is applied to the development of seawater-exchanging breakwater. The incident waves can induce a large response in the resonator when incident wave frequency is close to one of natural modes of the resonator. Largely amplified potential energy due to the resonance supplies clean seawater into the harbor side throughout the channel. Flow supplied by the resonator circulates the seawater of harbor and helps to improve water quality. Within the framework of linear potential theory, matched asymptotic expansion method is employed to analyze the wave responses in a resonator. The semi-circular shape of the resonator has been chosen as an analytic model for mathematical simplicity. The wave responses of both single and arrays of Helmholtz resonator are investi¬gated. To validate an analytic solution, model test is conducted at 2-dimensional wave tanle Wave hcights in the resonator and velocity at the channel are measured for the state of valve-on and valve-off.

  • PDF

Numerical Study on the Effects of Pressure Wave Propagation for Tunnel Entrance Shape Change in High-Speed Railways (고속철도의 터널입구 형상변황에 따른 압력파동 현상에 관한 수치적 연구)

  • 목재균;백남욱;유재석;최윤호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.50-59
    • /
    • 1997
  • When a front head of train enters a tunnel at a high speed, compression wave is generated at tunnel entrance due to the confinement effect and propagated along the tunnel with sound of speed. The propagated compression wave is reflected at tunnel exit due to abrupt pressure change at passage. The reflected wave is expansion pressure wave. And when the rear head of train goes through the tunnel entrance, another expansion pressure wave is generated and propagated along the tunnel. The pressure drop occurs seriously around train when the two expansion pressure waves come cross on train in the tunnel. In order to reduce the pressure drop, the compression wave front must be controlled because the intensity and magnitude of pressure drop is nearly proportional to that of compression wave at tunnel entrance. This study relates to reduction of the pressure wave gradient with respect to tunnel entrance shape change with various kind of angle and rounding. The results show characteristics of wave propagation in tunnel, usefulness of characteristic curve to estimate proper time domain size in numerical study and measuring time in actual experiment. Also rounding is contributed to improve pressure wave front even if its radius is very small at tunnel entrance. In order to improve of pressure wave front at tunnel entrance, proper angle is prefered to rounding with big radius and an angle of around 14$^{\circ}$ is recommended according to this simulations, And it is expected to reduce additional pressure drop in tunnel when the location and the size of the internal space for attendant equipment are considered in advance.

  • PDF

Biomimetics of Nano-pillar (나노섬모의 자연모사 기술)

  • Hur, Shin;Choi, Hong-Soo;Lee, Kyu-Hang;Kim, Wan-Doo
    • Elastomers and Composites
    • /
    • v.44 no.2
    • /
    • pp.98-105
    • /
    • 2009
  • The cochlea of the inner ear has two core components, basilar membrane and hair cells. The basilar membrane disperses incoming sound waves by their frequencies. The hair cells are on the basilar membrane, and they are the sensory receptors generating bioelectric signals. In this paper, a biomimetic technology using ZnO piezoelectric nano-pillar was studied as the part of developing process for artificial cochlea and novel artificial mechanosensory system mimicking human auditory senses. In particular, ZnO piezoelectric nano-pillar was fabricated by both low and high temperature growth methods. ZnO piezoelectric nano-pillars were grown on solid (high temperature growth) and flexible (low temperature growth) substrates. The substrates were patterned prior to ZnO nano-pillar growth so that we can selectively grow ZnO nano-pillar on the substrates. A multi-physical simulation was also conducted to understand the behavior of ZnO nano-pillar. The simulation results show electric potential, von Mises stress, and deformation in the ZnO nano-pillar. Both the experimental and computational works help characterize and optimize ZnO nano-pillar.

Diagnostic Application of Temporomandibular Joint Disorder and Ultra Sound Guided Oral &Maxillofacial application (초음파를 이용한 턱관절질환의 진단과 초음파 가이드의 활용)

  • Seong, Tae-Hwan;Park, Jung-Hyun;Kim, Sun-Jong
    • The Journal of the Korean dental association
    • /
    • v.55 no.11
    • /
    • pp.789-799
    • /
    • 2017
  • Ultrasound images are noninvasive, can be observed in real time, have no radiation exposure, do not cause pain, and are not restricted in use depending on the patient's prosthetic implant or medical condition. Since the use of ultrasound in the dental field was first applied for tooth preparation in 1957, the use of diagnostic ultrasound for the first time in 1963 has been reported. Currently, it is used in the diagnosis of soft tissue lesions such as malignant tumor or salivary gland disease, fine needle aspiration test, temporomandibular joint disease, lymph node metastasis, measurement of muscle thickness and inflammatory diseases, differentiation of periapical cyst and granulation tissue, measurement of periodontal tissue thickness. The ultrasound image can be visualized in real time. The clinician can explain the structure to the patient while consulting the patient and consult the patient. When injecting the drug into a specific site or aspirating a specific site or substance, So that it can be confirmed and practiced. Recently, ultrasonic equipment specialized in the dental field has been developed and marketed, and it is expected that the use of ultrasonic waves will become active in the dentistry. In the future, development of popular equipment with size and frequency suitable for dental diagnosis and various researches on maxillofacial ultrasonic anatomy. If clinical studies are continuously carried out to demonstrate efficacy, ultrasound is expected to aid in accurate diagnosis and treatment throughout the dentistry.

  • PDF

Comparison of Track Vibration Characteristics for Domestic Railway Tracks in the Aspect of Rolling Noise (철도 전동 소음의 관점에서 해석한 국내 철도의 진동 특성 비교)

  • Ryue, Jungsoo;Jang, Seungho
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.2
    • /
    • pp.85-92
    • /
    • 2013
  • An important source of noise from railways is rolling noise caused by wheel and rail vibrations induced by acoustic roughness at the wheel-rail contact. The main contributors to rolling noise are the sleepers, rail, and wheels. In order to analyze and predict rolling noise, it is necessary to understand the vibrating behaviors of railway tracks, as well as of the wheels. In the present paper, theoretical modeling methods for railway track are reviewed in terms of rolling noise; these methods are applied for the three representative types of domestic railway tracks operated: the conventional ballasted track, KTX ballasted track and KTX concrete track. The characteristics of waves propagating along rails are investigated and compared among the types of tracks. The tracks are modeled as discretely supported Timoshenko beams and are compared in terms of the averaged squared amplitude of velocity, which is directly related to the sound radiation from the rails.