• Title/Summary/Keyword: Sound waves

Search Result 273, Processing Time 0.022 seconds

The Comparative Study on the Characteristics of Thermoacoustic Laser According to Shapes of Resonance Tube (공명 튜브의 기하학적 형상에 따른 열음향 레이저의 특성 비교 연구)

  • Kim, Nam-Jin;An, Eoung-Jin;Oh, Won-Jong;Oh, Seung-Jin;Chun, Wongee
    • Journal of Energy Engineering
    • /
    • v.21 no.2
    • /
    • pp.133-137
    • /
    • 2012
  • Among various clean energy technologies, the solar energy technology has been widely used in various fields such as photovoltaic power generation and solar water/space heating. These days, special attention is drawn on its conversion into acoustic energy along with waste heat as a means to promote clean energy utilization. This work was carried out to investigate the possibility of converting solar energy into acoustic waves, especially, its performance characteristics for a single resonance tube (20.2 mm in ID). Variations are made for the stack length and its position as well as power supply. For a resonance tube of 200mm, an average sound pressure of 114.5 dB was measured with a stack length of 25.6mm at 5cm from the closed end. When the power supply was increased to 35W, an average sound pressure of 117.29 dB was detected with a frequency of 500Hz. There was an increase in frequency, 630 Hz (115.7dB), with a shorter resonance tube of 150mm.

Development of Interactive Video Using Real-time Optical Flow and Masking (옵티컬 플로우와 마스킹에 의한 실시간 인터렉티브 비디오 개발)

  • Kim, Tae-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.6
    • /
    • pp.98-105
    • /
    • 2011
  • Recent advances in computer technologies support real-time image processing and special effects on personal computers. This paper presents and analyzes a real-time interactive video system. The motivation of this work is to realize an artistic concept that aims at transforming the timeline visual variations in a video of sea water waves into sound in order to provide an audience with an experience of overlapping themselves onto the nature. In practice, the video of sea water waves taken on a beach is processed using an optical flow algorithm in order to extract the information of visual variations between the video frames. This is then masked by the silhouette of an audience and the result is projected on a gallery space. The intensity information is extracted from the resulting video and translated into piano sounds accordingly. This work generates an interactive space realizing the intended concept.

A Novel Method for Material Rendering and Real Measurement of Thickness Using Ultrasound (초음파를 이용한 실측 두께 측정과 재질 렌더링)

  • Choi, Taeyoung;Chin, Seongah
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.190-197
    • /
    • 2014
  • In this paper, we present a method for optical parameter-based material rendering with measuring the thickness of a material using ultrasonic waves. Thickness is an important element in determining the reflectance and transmittance of a material along with its optical characteristics and plays a crucial role in more realistic object rendering. In studies conducted thus far, thickness has been measured and used for rendering. The proposed method is a novel method attempted for the first time ever to render a material considering the thickness of a material whose thickness cannot be measured by visual assessment, using ultrasonic waves. It was implemented by measuring the sound velocity of the reference sample and applying the results to the thickness measurement of other objects that have the same characteristics. The characteristics of the objects measured are reflected in the quality of the final rendering, thus verifying the importance of thickness in rendering.

Numerical Simulation of Directivity for Probe and Surface Defect (탐촉자와 표면 결함에 대한 지향성의 수치 실험에 관한 연구)

  • Nam, Young-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.1
    • /
    • pp.291-298
    • /
    • 1995
  • An ultrasonic testing uses the directivity of the ultrasonic wave which propagates in one direction. The directivity is expressed as the relationship between the propagate direction and its sound pressure. This paper studied the directivity of shear waves emitted from angle probes and scattered from surface defects by using visualization method. These experimental results were compared with the theory which was based on the continuous wave. The applicability of continuous wave theory was discussed in terms of the parameter $d/{\lambda}$; where d is transducer or defect size and ${\lambda}$ is the wavelength. In the case of angle probes, the experimental results show good agreement with theoretical directivity on the principal lobe. When defect size was smaller than the wavelengths, clear directivity in the reflected wave was observed. In the case of the same ratio of defect size to wavelength, the directivity of reflected waves from the defect show almost the same directivity in spite of frequency differences. When the $d/{\lambda}$ is greater than 1.5, measured directivities almost agreed with the theoretical one.

  • PDF

Experimental Study of Vibration Characteristics of OKPO 300 (OKPO 300 진동 특성에 대한 실험적 연구)

  • Hwang, Arom
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.400-404
    • /
    • 2016
  • This paper presents experimental results for the vibration characteristics of the small unmanned underwater vehicle (UUV) OPKO 300, which was designed and manufactured by Daewoo ship and Marine Engineering Ltd. The autonomy of UUVs has led to an increase in their use in scientific, military, and commercial areas because their autonomy makes it possible for UUVs to be utilized instead of humans in hazardous missions such as mine countermeasure missions (MCM). Since it is impossible to use devices based on electromagnetic waves to gather information in an underwater environment, only sonar systems, which use sound waves, can be used in underwater environments, and their performance can strongly affect the autonomy of a UUV. Since a thruster system, which combines a motor and propeller in a single structure, is widely used as the propulsion system of a UUV and is mounted on the outside of a UUV’s stern, it can generate vibration, which can be transferred throughout the shell of the UUV from its stern to its bow. The transferred vibration can affect the performance of various sonar systems such as side-scan sonar or forward-looking sonar. Therefore, it is necessary to estimate the effect of the transferred vibration of the UUV on the sonar systems. Even if various numerical methods were used to analyze the vibration problem of a UUV, it would be hard to predict the vibration phenomena of a UUV at the initial design stage. In this work, an experimental study using OKPO 300 and an impact hammer was carried out to analyze the vibration feature of a small real UUV in the air. The frequency response function of the vibration based on the experimental results is presented.

Experimental Study on Estimation of Flight Trajectory Using Ground Reflection and Comparison of Spectrogram and Cepstrogram Methods (지면 반사효과를 이용한 비행 궤적 추정에 대한 실험적 연구와 스펙트로그램 및 캡스트로그램 방법 비교)

  • Jung, Ookjin;Go, Yeong-Ju;Lee, Jaehyung;Choi, Jong-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.115-124
    • /
    • 2015
  • A methodology is proposed to estimate a trajectory of a flying target and its velocity using the time and frequency analysis of the acoustic signal. The measurement of sound emitted from a flying acoustic source with a microphone above a ground shall receive both direct and ground-reflected sound waves. For certain frequency contents, the destructive interference happens in received signal waveform reflected path lengths are in multiple integers of direct path length. This phenomenon is referred to as the acoustical mirror effect and it can be observed in a spectrogram plot. The spectrogram of acoustic measurement for a flying vehicle measurement shows several orders of destructive interference curves. The first or second order of curve is used to find the best approximate path by using nonlinear least-square method. Simulated acoustic signal is generated for the condition of known geometric of a sensor and a source in flight. The estimation based on cepstrogram analysis provides more accurate estimate than spectrogram.

Experimental study on Mechanical Properties and Optimum Mix Design of Sulfur-Rubber Concrete (SRC) (황(黃)-고무 콘크리트의 역학적(力學的) 특성(特性)과 최적배합비(最適配合比)에 관한 연구(硏究))

  • Na, Okpin;Lee, Jaesung
    • Resources Recycling
    • /
    • v.22 no.1
    • /
    • pp.20-28
    • /
    • 2013
  • Recently, as the registration of vehicles increases, the utilization of the waste tires is emerging as environmental issues. Crumb rubber reproduced by scrap tires has been reused up to 25% in the construction field. The purpose of this paper is to investigate the mechanical properties of sulfur-rubber concrete (SRC) and to suggest the optimum mix design in terms of the compressive strength. Specimens were prepared with various mixing parameters: amount of sulfur, rubber, and micro-fillers. Two casting processes were also mentioned; dry process and wet process. The results mainly showed that the compressive strength of SRC decreased with an increment of rubber content. However, adding micro-filler and adjusting sulfur contents could improve the compressive strength of SRC. Optimum values of sulfur and rubber content were selected by workability and compressive strength of SRC. SRC can be applied to road constructions where high strength of concrete is not concerned, to wall panels that require low unit weight, to construction of median in highways to resist high impact load, and in sound barriers to absorb sound waves.

DIRECTIVE HARMONIC WAVE DETECTING SYSTEM USING LINEAR MICROPHONE ARRAY (직선배열 Microphone에 의한 음원의 방향과 주파수의 분석 System)

  • CHANG J.;ABE M.;KIM C.;KIDO K.
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.13 no.4
    • /
    • pp.145-149
    • /
    • 1980
  • Various methods have been so far proposed to find out the directions and spectra of sound waves from the sources for provisions of noise controls. The conventional methods are generally classified into three systems such as, single microphone system, moving microphone system and multi-microphone system, which composes a resultant super directivity by giving a appropriate delay and a weighting coefficient in the output of each microphone. In case of using a single microphone there is a difficulty in providing it with desirable super directivity in the low frequency range, while in case of using multi-microphone system there has been a disadvantage that the measurement of directivity could not separately be done with the spectrum analysing. And in case of the use of a moving microphone system it needs a condition that the sound source to be detected should be stationary state and in rest. However here we introduce a method that the spectral analysing and the directivity of synthesis can be separately carried out by using a linear array of many microphones, in which each output of the microphone is multiplied by appropriate weighting coefficient and all of those products are summed after passing through adequate filters. The resultant signal is then sampled with an adequate sampling frequency and taken average for processing.

  • PDF

The Effect of Post-deposition Annealing on the Properties of Ni/AlN/4H-SiC Structures (Ni/AlN/4H-SiC 구조로 제작된 소자의 후열처리 효과)

  • Min, Seong-Ji;Koo, Sang-Mo
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.604-609
    • /
    • 2020
  • We investigated the influence of rapid thermal annealing on aluminum nitride (AlN) thin film Schottky barrier diodes (SBDs) manufactured structures deposited on a 4H-silicon carbide (SiC) wafer using radio frequency sputtering. The Ni/AlN/4H-SiC devices annealed at 400℃ exhibited Schottky barrier diode (SBDs) properties with an on/off current ratio that was approximately 10 times higher than that of the as-deposited device structures and the devices annealed at 600℃ as measured at room temperature. Auger electron spectroscopy (AES) measurements revealed that atomic oxygen concentrations in the annealed AlN devices at 400℃, is ascribed to the improvement in on/off ratio and the reduction of on-resistance. Additionally, we investigated the electrical characteristics of the AlN/SiC SBD structures depending on the frequency variation of sound waves.

Geophysical Study Through Infrasound Observation (인프라사운드 관측을 통한 지구물리학적 연구)

  • Che, Il-Young;Jeon, Jeong-Soo
    • Economic and Environmental Geology
    • /
    • v.39 no.4 s.179
    • /
    • pp.495-505
    • /
    • 2006
  • Atmospheric infrasound is defined as low frequency inaudible sound waves generated from natural phenomena and human activities. One property of long-distance travelling of infrasound makes it possible to detect the wave propagated from remote sound sources and to understand many geophysical phenomena generating it. Recently, advanced global infrasound sensor arrays are being deployed to monitor the clandestine nuclear test and to study geophysical phenomena in the world. In Korea, five seismo-acoustic arrays consisting of co-located seismometer and micro-barometer have been operated to discriminate the artificial explosions from the natural earthquakes in and around the Korean Peninsula. In addition to the discrimination purpose, these ways also record distinct infrasonic signals from natural phenomena on global scale such as large earthquake, bolide event, volcanic explosion, typhoon, and so on. As a new frontier in monitoring the earth, infrasound is being applied to understand various phenomena in and above the earth's surface.