• Title/Summary/Keyword: Sound level intensity

Search Result 77, Processing Time 0.02 seconds

A study on characteristics of noise propagation for railway (철도차량의 소음방사 특성에 관한 연구)

  • Kim, Jae-Chul;Koo, Dong-Hoe;Moon, Kyeong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.204-209
    • /
    • 2001
  • The more sophisticated patterns of propagation model is presented in this paper, which includes three different source characteristics (spherical, cosine and dipole). The spherical, cosine and dipole radiation characteristics compared, and sound event level and the maximum sound level are calculated by experiment and calculation. It is shown that patterns of propagation have dipole characteristics for low speed range (below about 150Km/h) at electric multiple system. We know that push-pull high speed system has cosine characteristics of noise propagation at low speed range (below about 200Km/h).

  • PDF

Damping Patch Placement on Outdoor Unit of Air-conditioner by Using Structural Intensity Technique (구조 인텐서티법을 이용한 에어컨 실외기의 제진재 적용)

  • 김규식;진심원;정인화;이정우;강연준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.7
    • /
    • pp.577-585
    • /
    • 2004
  • In this paper, reactive shearing structural intensity method is extended to damping patches placement on outer panels of outdoor unit of air-conditioner to reduce its structural borne noise. The structural intensity is calculated from the normal velocities of structures that are measured by using a laser scanning vibrometer, and $textsc{k}$-space (wave-number domain) signal processing is used to obtain the spatial derivatives in formulation of structural intensity. This method is applied to the outdoor unit of air-conditioner on shaker-exciting mode and operating mode. and then damping patches are placed over area of high reactive shearing structural intensity for reducing the radiated noise. Experimental results show the largest reduction of sound pressure level of an outdoor unit by appling small damping patches to optimal position.

Evaluation for Noise Reduction of the HVAC by Modification of CAM Curve (CAM 곡선 개선에 의한 차량용 공조기의 소음 저감 평가)

  • Jeong, J.E.;Jung, C.Y.;Seo, B.J.;Jeong, U.C.;Oh, J.E.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.9
    • /
    • pp.787-797
    • /
    • 2011
  • The noise in a vehicle is an important factor for customers purchasing a car. Particularly, reduction of the noise that is generated from HVAC(heating, ventilation and air conditioning) is very important since it has considerable effects on interior noise. In general, identification of noise source is crucial to reduce noise level. The complex acoustic intensity method is widely used to obtain the accurate measurement and identification of noise source. Therefore, in the previous study, noise source of HVAC was identified through experimental approach using the complex acoustic intensity method. In this study, we are intended to confirm reduced level of noise by comparing the result between before and after modification of cam curve that is based on identified noise source of HVAC. It is found out that noise source of HVAC are motor and cam area using the complex acoustic intensity method in the previous study. We performed experiments to compare noise level between before and after modification of cam curve. Especially, it can be seen that complex acoustic intensity method using both active and reactive intensity is vital in devising a strategy for comparison to noise level. Also, the vector flow of acoustic intensity was investigated to identify sound intensity distributions and energy flow in the near field of HVAC.

Study on Sound Production and Phonotaxis of Some Fishes and Crabs (몇가지 어류 및 갑각류의 발음과 주음성에 관한 연구)

  • 김상한
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.14 no.1
    • /
    • pp.15-36
    • /
    • 1978
  • Underwater sounds of some fishes and crabs were analyzed in the laboratory. The behavioral responses to the playback sounds of their feeding and croaking sound were investigated. The samples used in the experiment were as follows: Nibea albiflora, seriola quinqueradiata, Navodon modestus, Fugu xanthopterus, chrysophrys major, Scylla serrata, Telmessus acutidens, Charybdis japonica, and Portunus trituberculatus. The feeding and croaking sounds of the samples were recorded by a tape recorder through a hydrophone in an anechoic aquarium. The sound intensity level was measured by means of a sound level meter at an anechoic chamber. The frequency, intensity and wave form of various sounds were analyzed with an analyzing system consisting of a 1/3 octave filter set, a high speed level recorder, an amplifier, an octave band analyzer and an oscilloscope. The most successful recording was edited into a sequence of sound track which repeats sound emitting for 5 to 7 seconds after pausing for 5 to 7 seconds. The sequence was then reproduced into an anechoic aquarium through the under water speaker. The experimental anechoic aquarium used for the sample fishes was divided into the four sections with any three screens selected from 40$\times$40mm, 60$\times$60mm, 80$\times$80mm and 100$\times$100mm mushes according to the species of the fishes, besides that for crabs were not sectioned. The results of the investigation are as follows: 1. Of the feeding sound of fish, the frequency of wave from of the sound produced by Nibea albiflora and seriola quinqucradiata was 125~250Hz, that by Navodon modestus 63~125Hz, and that by Fugu xanthopterus 400~500Hz. The pressure level of the feeding sound produced by Nibea albiflora and Seriola quinqueradiata was 56~62db, that by Navodon modestus 57~59db, and that by Fugu xanthopterus 60~64db. 2. Of the croaking sound of Nibea albiflora, the frequency of the sound was 125~250Hz almost equivalent to that of feeding sound, and the pressure level was 62~63db, slightly higher than that of feeding sound. 3. Of the croaking sounds of crabs, the frequency of the sound produced by scylla serrata was 125~250Hz, that by Charybdis japonica and Telmessus acutidens 500~1,000Hz, and that by Portunus trituberculatus 250~500Hz. The pressure level of the croaking sound by Scylla serrata was 68~70db, and that by Charybdis japonica, Telmessus acutidens and Portuens trituberculatus 50~62db. 4. Phonotactic responses of Nibea albiflora and Seriola quinqueradiata to the feeding sounds produced by their own species, the same body length were conspicuous with the phonotactic index of 56~87%, but that of Navodon modestus, Chrysophrys major and Fugu xanthopterus were hardly recognized. 5. Phonotactic responses of the sample fishes to the sinusoidal sound with the frequency range of 50 to 9,000 Hz were observed not conspicuous. 6. Phonotactic responses of Portunus trituberculatus to the croaking sounds produced by their own species was varied in the range of 40~100%, according to the carapace length and the sex.

  • PDF

An Experimental Approach and Improvement of Buzz, Squeak and Rattle Noise from a Seat (차량 시트의 BSR Noise에 대한 시험적 고찰 및 개선)

  • Jeon, Jun-Sig;Kim, Byung-Hoon;Bang, Byung-Ju;Jang, Ik-Guen;Ji, Sung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.675-679
    • /
    • 2006
  • Today, the interior noise perceived by the occupants is an important factor in the design of automotive interior assemblies. Buzz, Squeak and Rattle Noises in a Seats are one of the major concerns mentioned above. In this study, the terms 'Buzz, squeak and rattle' were defined as the noise originating from structural vibrations in an assembly. And, the BSR noise of vehicle seat was investigated and the improvement of BSR noise level was confirmed though the structural treatment based on the structural analysis results from the modal and sound intensity of seat.

  • PDF

An Experimental Study(I) on the Noise Emission Characteristics of Motor Vehicles Using Sound Intensity Measurement Method -A Case of Engine and Exhaust Noise- (음향 인텐시티 측정법을 이용한 자동차의 소음방사특성에 관한 실험적 연구 I -엔진 및 배기계 부위소음을 중심으로-)

  • 양관섭;유남구;박병전;김영완
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.843-849
    • /
    • 1996
  • Locations and emission characteristics of noise source of motor vehicles are great important factors to control the road traffic noise in effective ways. From results of this study on emission characteristics of engine and exhaust noise, we could find that every noise emission of different kind of vehicles has smilar pattern. The main emission locations of engine noise for the front of vehicle became the space between the road surface and bottom of the body and radiator grill, and for the side of vehicle became the space between the road surface and bottom nearby the front wheel. In case of exhaust noise of passenger-car and light truck, all the highest sound intensity level located near surface of road. But it is hard to conclude the height of noise source of driving vehicles with only results of this study. So further studies are needed to check the emission characteristics of noise.

  • PDF

Effect of Surface Treatment on Articulation Index for Vehicles (흡음재 처리를 통한 차실내부 음의 명료도 향상에 관한 연구)

  • 이정규;김정태
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.240-246
    • /
    • 2000
  • One of the widely accepted methods for evaluating the interior sound quality of automobiles is Articulation Index(AI). The AI actually measures the articulation level of the sound in the vehicle cabin as passengers talk to one another. In this study, the effect of two different absorption materials inside the cabin on AI has been investigated by ray-tracing method : one is firewall, the other is celling. It turns out that the back seat location is found to be strongly dependent on the type of absorption materials treated at the celling, since the sound absorbing area is different due to the location and the firewall is situated in the "Reverberation Radius". The proposed methdo could be used to improve the sound quality of automobiles at the design stge.sign stge.

  • PDF

Noise and Vibration Characteristics by Heavy-weight Floor Impact (중량바닥충격에 의한 소음 및 진동 특성)

  • 서상호;송희수;전진용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.919-922
    • /
    • 2003
  • The correlation between noise and vibration by a heavy-weight floor impact was studied. The triggering technique was used for increasing the reliability and stability to measure the level of sound pressure, sound intensity and vibration acceleration. The simple finite element and rigid body analysis method were suggested to calculate the natural frequencies of the multi-layer floor system. The result show that the isolation material adapted to reduce the light-weight floor impact noise, causing the natural frequency lower, make resonance with dominant driving frequency, and increase the noise level very sharply. Therefore the noise level Peak in the region of low frequency, below 63Hz, would be related with the natural frequencies of the floor system.

  • PDF

Response of Anchovy to Artificial Sounds (소리자극에 대한 멸치의 반응)

  • 김상한
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.14 no.2
    • /
    • pp.57-62
    • /
    • 1978
  • When fisherman use the boat seine net to catch anchovy, a large noise (drum can, small drum and small gong) is used to scare the anchovy school along the wing nets, and into the bag net were they are caught. We want to know how much of an effect these s:mnds have on forceing the anchovy school towards the bag net. The underwater sounds of ancho\'y, drum can, small drum and small gong were analyzed in the labroatory. The behavioral responeses to the playback sounds of anchovy feeding and sounds of artificial instruments were also investigated. The feeding and artificial sounds of the samples were recorded by a tape recorder through a hydrophone in an anechoic aquarium. The sound intensity level was measured by means of a sound level meter in an anechoic chamber. The frequency and intensity of various sounds were analyzed with an analyzing system consisting of a ~-octave filter set, a high speed level recorder, an amplifier and an oscilloscope. The most successful recording was edited into a 9 to 10 second sound track and was repeated in a sequence of 9 to 10 second intervals. The sequence was then reproduced into an anechoic aquarium through the underwater speaker. The results of investigation are as follows; 1. The frequency of the feeding sound was 63~80Hz, and the pressure level produced was less than 32db. 2. The frequencies of the artificial sounds were 315~ 1,OOOHz, and the pressure levels were 88~95 db in the air. 3. When a hydrophone was placed 70cm below the surface with artificial sounds (drum can, small drum and small gong) produced 1 meter above the surface, the pressure level decreased about 30db. 4. The feeding sound was ineffective in attracting the anchovy, because of interference from ambient noise. 5. The artificial sounds had such a small effect on the anchovy's that they could not be used in ocean fisheries.

  • PDF

Characteristics of Industrial Machinery Noise (산업기계류의 소음 특성)

  • Kang, Dae-Joon;Gu, Jin-Hoi;Lee, Jae-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.2
    • /
    • pp.160-165
    • /
    • 2010
  • As the various industrial machinery has come into being by development of industrial technology, the productivity of the basic industrial machinery has improved. However, at the same time, noise from various industrial machinery disturbs the quiet environment. There are 35 kinds of the noise emission machinery defined in the noise and vibration control act according to the horse power and the number of machinery. These were classified in 1992, and the characteristics of the noise emission machinery may be different from the past one. So we need to investigate the characteristics of the noise emitted by machinery to control it rightly. We measured sound intensity of 32 noise emission machinery to calculate the sound power levels of those and investigated the characteristics of the sound power level of those according to the frequency. We found that the forging machine, concrete pipe and pile making machine, sawing machine, etc. are noisy. The generator, the concrete pipe and pile making machine, etc. emit the low frequency noise, but the molding machine, the stone cutter, the metal cutter, etc. emit the high frequency noise.