• Title/Summary/Keyword: Sound leak

Search Result 24, Processing Time 0.047 seconds

An Algorithm for Leak Locating using Coupled Vibration of Pipe-Fluid (배관-유체 연성진동을 이용한 누수지점 탐지 알고리듬 개발 연구)

  • Lee, Young-Sup;Yoon, Dong-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.798-803
    • /
    • 2004
  • Leak noise is a good source to identify the exact location of a leak point of underground water pipelines. Water leak generates broadband sound from a leak location and this sound propagation due to leak in water pipelines is not a non-dispersive wave any more because of the surrounding pipes and soil. However, the necessity of long-range detection of this leak location makes to identify low-frequency acoustic waves rather than high frequency ones. Acoustic wave propagation coupled with surrounding boundaries including cast iron pipes is theoretically analyzed and the wave velocity was confirmed with experiment. The leak locations were identified both by the acoustic emission (AE) method and the cross-correlation method. In a short-range distance, both the AE method and cross-correlation method are effective to detect leak position. However, the detection for a long-range distance required a lower frequency range accelerometers only because higher frequency waves were attenuated very quickly with the increase of propagation paths. Two algorithms for the cross-correlation function were suggested, and a long-range detection has been achieved at real underground water pipelines longer than 300m.

  • PDF

Wireless Water Leak Detection System Using Sensor Networks (센서네트워크를 이용한 무선 누수 탐지 시스템)

  • Choi, Soo-Hwan;Eom, Doo-Seop
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.3
    • /
    • pp.125-131
    • /
    • 2011
  • Water leak detection system is a system based on wireless sensor networks(WSNs) which detect a leak on water supply, localize the leak position and finally inform a water management center. A traditional leak detection method is to use experienced personnel who walk along a pipeline listening to the sound that is generated by the leaks and their effectiveness depend on the experience of the user. Also making more successful detection, it should be processed at middle of the night when people do not use water, as the result users have to operate the leak detection system at midnight. In this paper, we propose a new method for the water leak detection system based on the WSNs and describe it in detail. Leak detection devices which detect a leakage of water transmit and receive the result of water leak detection with each other by configuring WSNs to improve reliability of the detection result. Also, we analyzed the sound from water flowed in pipeline, proposed the pre-signal processing to separate a leakage sound from noisy sound. And lastly, It is especially important to make a time synchronization with water leak detection devices that are installed on the pipeline, we used 1PPS(1 Pulse Per Second) signal generated by GPS, therefore we could get a precise time synchronization. The proposed system set up in Namyangju and performances were evaluated.

A Study on an Acoustical Model for Gas Leak Detection in a Pipeline (배관계의 가스누설탐지를 위한 음향모델 연구)

  • Yang, Yoon-Sang;Lee, Dong-Hoon;Koh, Jae-Pil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.2
    • /
    • pp.91-96
    • /
    • 2014
  • An acoustical model for detecting the leak location in a buried gas pipeline has been developed. This model is divided into an experimental model for sound diagnosis, and a theoretical model for sound prediction, which is based on the transfer matrix method, representing the sound pressure and the volume velocity as state variables. The power spectrum is measured by attaching only one microphone to the closed end pipe. It has been shown that the response magnitude of acoustic pressure signals calculated by the acoustical model depends upon the thickness and diameter of a pinhole. The validity for the acoustical model has been verified through a comparison between the measured and calculated results.

Pinpointing of Leakage Location Using Pipe-fluid Coupled Vibration (파이프-유체의 연성진동을 이용한 누수위치 식별연구)

  • 이영섭;윤동진
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.2
    • /
    • pp.95-104
    • /
    • 2004
  • Leaks in underground pipelines can cause social, environmental and economical problems. One of relevant countermeasures against leaks is to find and repair of leak points of the pipes. Leak noise is a good source to identify the location of leak points of the pipelines. Although there have been several methods to detect the leak location with leak noise, such as listening rods, hydrophones or ground microphones, they have not been so efficient tools. In this paper, accelermeters aroused to detect leak locations which could provide an easier and more efficient method. Filtering, signal processing and algorithm of raw input data from sensors for the detection of leak location are described. A 120m-long and a 70m-long experimental pipeline systems are installed and the results with the systems show that the algorithm with the accelerometers offers accurate pinpointing for leaks location detection. Theoretical analysis of sound wave propagation speed of water in underground pipes, which is critically important in leak locating, is also described.

Method of how to improve transmission loss of dry walls (조립형 건식벽체의 차음성능 개선 공법에 관한 연구)

  • Kim, Kyungho;Jeon, JinYong;Kim, SungHoon;Lee, HyungKi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.719-724
    • /
    • 2013
  • In the case of newly developed stud which has more performance of sound transmission loss, it is expected that sound would transmit through runner than stud. so we developed construction method of runner and stud. As a result, sound transmission loss is improved about 2 dB by using this method. But this construction method could be applied to only newly developed stud. In addition, sound leak of wall joint is about 2 dB, and it could be improved by using rubber gasket at joint.

  • PDF

Pinpointing of Leakage Location of Water Pipelines using Accelerometers (가속도계를 이용한 상수도 배관의 누수위치 식별연구)

  • 이영섭;윤동진;정중채
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.821-826
    • /
    • 2003
  • Leaks in underground pipelines can cause social, environmental and economical problems. One of a good contermeasures of leaks Is to find and repair of leak points of pipes. Leak noise is a good source to identify the location of leak points of pipelines. Although there have been several methods to detect the leak location with leak noise, such as listening rods, hydrophones or ground microphones, they were not so efficient tools beca. In this paper, two accelermeters are used to detect leak locations which could provide an easier and efficient method. The filtering, signal processing and algorithm is described for the detection of leak location. A 120m-long pipeline system for experiment is installed and the results with the system show that the algorithm with the two accelerometers gives very accurate pinpointing of leaks. Theoretical analysis of sound wave propagation speed in underground pipes is also described.

  • PDF

An Algorithm for Leak Locating using Coupled Vibration of Pipe-Water (배관-유체 연성진동을 이용한 누수지점 탐지알고리듬 개발연구)

  • Lee, Yeong-Seop;Yun, Dong-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.985-990
    • /
    • 2004
  • Leak noise is a good source to identify the exact location of a leak point of underground water pipelines. Water leak generates broadband noise from a leak location and can be propagated to both directions of water pipes. This sound propagation due to leak in water pipelines is not a non-dispersive wave any more because of the surrounding pipes and soil. However, the necessity of long-range detection of this leak location makes to identify low-frequency acoustic waves rather than high frequency ones. Acoustic wave propagation coupled with surrounding boundaries including cast iron pipes is theoretically analyzed and the wave velocity was confirmed with experiment. The leak locations were identified both by the acoustic emission (AE) method and the cross-correlation method. In a short-range distance, both the AE method and cross-correlation method are effective to detect leak position. However, the detection for a long-range distance required a lower frequency range accelerometers only because higher frequency waves were attenuated very quickly with the increase of propagation paths. Two algorithms for the cross-correlation function were suggested, and a long-range detection has been achieved at real underground water pipelines longer than 300m.

  • PDF

Time Delay Estimation for the Identification of Leak Location (시간지연 추정을 통한 누수위치 식별 연구)

  • Lee, Young-Sup;Yoon, Dong-Jin;Kim, Chi-Yup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.327-332
    • /
    • 2004
  • Leak noise is a good source to identify the exact location of a leak point of underground water pipelines. Water leak generates broadband noise from a leak location and can be propagated to both directions of water pipes. This sound propagation due to leak in water pipelines is not a non-dispersive wave any more because of the surrounding pipes and soil. However, the necessity of long-range detection of this leak location makes to identify low-frequency acoustic waves rather than high frequency ones. Acoustic wave propagation coupled with surrounding boundaries including cast iron pipes is theoretically analyzed and the wave velocity was confirmed with experiment. The leak locations were identified both by the acoustic emission (AE) method and the cross-correlation method. In a short-range distance, both the AE method and cross-correlation method are effective to detect leak position. However, the detection for a long-range distance required a lower frequency range accelerometers only because higher frequency waves were attenuated very quickly with the increase of propagation paths. Two algorithms for the cross-correlation function were suggested, and a long-range detection has been achieved at real underground water pipelines longer than loom.

  • PDF

A Study on The Leak of Core Business Technologies Using Preventative Security Methods Such as Clustering (군집화를 이용한 기업 핵심기술 유출자 분류에 관한 연구)

  • Huh, Seung-Pyo;Lee, Dae-Sung;Kim, Kui-Nam
    • Convergence Security Journal
    • /
    • v.10 no.3
    • /
    • pp.23-28
    • /
    • 2010
  • Recently, the leak of domestic core technology of major business in Korea and the subsequent damage, has been increasing every year. Financial losses due to this leak are estimated to be about 220 trillion, which is equivalent to the gross budget of Korea Besides, the majority of the leaks are caused by former and current staff members, cooperated businesses, scientists and invesment companies. This shows that the source of the leaks are internal personnel. In this manner, we can infer that the management and plan of personnel security has not implemented sound practices to prevent technology leak by people. Therefore, this thesis suggests classifying methods of technology leak through clustering, one of the data mining methods about the information of internal personnel to prevent core technology leak from businesses.

Study on the Multi-measuring Method for Evaluation of Internal Leak of Power Plant Valve (발전용 밸브누설 평가를 위한 다중계측 연구)

  • Lee, S.G.;Park, S.K.;Park, J.H.;Kim, K.H.;Kim, Y.B.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.35-40
    • /
    • 2007
  • Leak would happen because of the damage of high temperature and high-pressure valve in nuclear power plant. condition based prevention maintenance is essential by using the suitable method based on local condition. Energy loss prevention can prevent from an accurate test, Local actually and ability. The methods of test for high energy fluid leak at present are analysis of ${\Delta}T$, AE(Acoustic Emission) analysis, and thermal image. The result for test of secondary system in nuclear power plant Unit reveals that the AE occurred clearly in leakage situation, but thermal image didn't occur. It is identified that leak is occurred when the orifice located front and back of valve operates. It shows that making a impatient judgment by using the single method if it is leakage is containing uncertainty. So we think that using the Multi-Measuring method is more sound judgment than single-measuring method.

  • PDF