• Title/Summary/Keyword: Sound control

Search Result 1,193, Processing Time 0.027 seconds

Vibration and noise control of slab using the multi-tuned mass damper (다중질량감쇠기를 이용한 슬래브의 진동 및 소음저감에 관한 연구)

  • Hwang, Jae-Seung;Kim, Hong-Jin;Kang, Kyung-Soo;Hong, Gun-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.659-664
    • /
    • 2008
  • In this study, it is outlined that heavy weight floor impact noise induced by the vibration of slab can be reduced by multi tuned mass damper(MTMD) effectively. Substructure synthesis is utilized to develope analytical model of slab coupled with MTMD and acoustic power is introduced to evaluate the performance of noise control for simplicity. Numerical analysis is carried out to investigate the effect of the properties of MTMD on the vibration and noise control. Numerical analysis shows that mass ratio of MTMD is critical on the vibration and noise control of the slab and it is essential to reduce the vibration in higher modes of slab because it has a great effect on the radiation of sound.

  • PDF

Active Noise Control in the Duct Using the Ring-type Smart Foam and the Optimization of a Cancellation Path (환형 스마트 폼을 이용한 덕트 내부의 능동 소음 제어 및 상쇄 경로 최적화)

  • 한제헌;강연준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.7
    • /
    • pp.499-507
    • /
    • 2003
  • This paper presents a method for active noise control (ANC) in a duct by using a ring-tyPe smart foam. The ring-type smart foam consists of an elastic porous material of lining shape and a PVDF film embedded In the material. The PVDF element acts as a secondary sound source to reduce the noise. Active noise control using a ring-type smart foam is only effective locally because of the way to excite radially. To enlarge the quiet zone, the duct Is lined with additional acoustic foam between the smart foam and the error microphone. When cancellation path ks optimized by the LMS/RLS algorithm, the computation power is reduced while control performance Is maintained. The filtered-x LMS algorithm is used to minimize the error signal.

Active Control of Noise Transmitted through a Window of Enclosures (음향 인클로저의 환기창을 통한 투과소음 능동제어)

  • Ji, Sumin;Hong, Chinsuk;Jung, Weuibong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.670-672
    • /
    • 2014
  • In this study, we investigate active control of noise transmitted through a window of enclosures minimizing the acoustic power. To reduce noise of the enclosures, passive methods with absorbing material are generally used. The passive methods, however, are limited use due to the vantilation windows. In this case, these windows are path of noise leakage. Feedforward active noise control technology is applied to minimize the sound power from the enclosure. The feedforward controller is implemented with FIR filter based on the transfer functions calculated numerically. The controller reflects the delay due to FIR filter. The noise transmitted through the window is actively controlled, and the reduction of the power is obtained by 15dB.

  • PDF

PROSODY CONTROL BASED ON SYNTACTIC INFORMATION IN KOREAN TEXT-TO-SPEECH CONVERSION SYSTEM

  • Kim, Yeon-Jun;Oh, Yung-Hwan
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.937-942
    • /
    • 1994
  • Text-to-Speech(TTS) conversion system can convert any words or sentences into speech. To synthesize the speech like human beings do, careful prosody control including intonation, duration, accent, and pause is required. It helps listeners to understand the speech clearly and makes the speech sound more natural. In this paper, a prosody control scheme which makes use of the information of the function word is proposed. Among many factors of prosody, intonation, duration, and pause are closely related to syntactic structure, and their relations have been formalized and embodied in TTS. To evaluate the synthesized speech with the proposed prosody control, one of the subjective evaluation methods-MOS(Mean Opinion Score) method has been used. Synthesized speech has been tested on 10 listeners and each listener scored the speech between 1 and 5. Through the evaluation experiments, it is observed that the proposed prosody control helps TTS system synthesize the more natural speech.

  • PDF

Active Noise Control in a Duct With Reflected Wave (반사파가 있는 관내의 능동 소음제어)

  • 오상헌;김양한
    • Journal of KSNVE
    • /
    • v.4 no.2
    • /
    • pp.187-198
    • /
    • 1994
  • This study is to describe the effects of the duct termination conditions conditions upon the active noise attenuation system. The adaptive filtering algorithm using FIR filter is implemented for duct noise attenuation. To avoid the instability caused by the acoustic feedback, two methods are considered. One is to use a compensating FIR filter. The other is to utilize uni-directional detecting microphone and uni-directional control speaker. Experimental results show that the reflections of sound from duct terminations greatly reduce the performance of ANC system. The directionality of detecting microphone and control speaker is a major factor to decide ANC performance. When there are some reflections from both duct terminations, the noise attenuation using finite FIR filter is not enough to model the duct plant. Especially, the reflection from the upstream termination reduces the noise attenuation in the frequencies related to the distance between control speaker and upstream termination. The performance of the noise attenuation is found to be largely enhanced by using uni-directional coupler, both on detecting microphone and control speaker, even if the duct system has an arbitrary termination conditions.

  • PDF

A method to generate virtual intensity at arbitrary position: Methodology and its physical meanings (임의의 위치에 가상 인텐시티 형성 방법: 방법론과 그 물리적 의미)

  • 최정우;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.652-657
    • /
    • 2003
  • This paper proposes a method to generate virtual intensity field in space. The sound field of a zone enclosing the listener position is controlled to have maximum acoustic intensity to the desired direction. In order to control acoustic intensity of a zone, space-averaged active intensity is introduced. The ratio of space-averaged active intensity and control effort is defined as a cost function and expressed as a function of source control signals. It is shown that the cost function represents radiation efficiency of multiple sources. The control signals maximizing the cost function is found through eigenvalue analysis. The proposed method is verified by numerical simulations performed in free field condition, and the results provide a relation between wavelength and the size of controllable intensity field.

  • PDF

Active Noise Control for Sound Propagation in a Duct (덕트 내부 소음의 능동 소음 제어)

  • Choi, Kyoung-Ho;Kim, Il-Hwan
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.317-322
    • /
    • 1998
  • The purpose of this present experiments was to simulate the Active noise control system using MATLAB Tool kit. The Least-Mean-Square algorithm is the most applicable one to optimize the ANC systems, even it has tight limitation. This paper shows the influence of choosing step size to the performance of the LMS adaptive filters. In addition to the simulation, this paper describes the method to design the filtered LMS algorithm to get the better performance in Active noise control. It contains the secondary-path modeling to realize the real Active noise control system in the requesting fields.

  • PDF

TWO TYPES OF ACTIVE NOISE CONTROL SYSTEM USING MFB LOUDSPEAKER

  • Nishimura, Yoshitaka;Shimada, Yasuyuki;Usagawa, Tsuyoshi;Ebata, Masanao
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.764-769
    • /
    • 1994
  • The impedance of an electro-acoustic transducer can be controlled by motional feedback, and the noise in a duct can be reduced actively by adjusting the impedance using an additional sound. In this paper, two approaches for active noise control using motional feedback (MFB) loudspeaker are described. First configuration uses an external sensor to pickup of source directly. In this configuration, the adaptation of controller is necessary to compensate the change of transfer function from noise source to control poing. The second configuration uses a new adaptive algorithm specialized for peridic noise. Because this configuration does not require any reference input and the error sensor couples very tightly with control loudspeaker, this MFB system itself is independent of the duct condition. No microphone are required in both configurations, so that a more reliable and stable active control system can be realized under severe conditions such as high pressure, high temperature, dust, flow and so on.

  • PDF

Preparation of Borosilicate Foamed Glass Body with Sound Absorption Characteristics by the Recycling Waste Liquid Crystal Display Glass (폐 LCD 유리를 이용한 흡음특성을 갖는 붕규산유리발포체 제조)

  • Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.612-619
    • /
    • 2016
  • In this research, an alumino-borosilicate foamed glass with sound absorption property was prepared using the waste borosilicate glass obtained from the recycling process of waste liquid crystal display (LCD) panel. A 100 g of pulverized waste borosilicate glass with the particle size of under 325 mesh, was mixed with 0.3 g (wt/wt) of graphite, each 1.5 g (wt/wt) of $Na_2CO_3$, $Na_2SO_4$ and $CaCO_3$ as a foaming agent, and 6.0 g (wt/wt) of $H_3BO_3$ and 3.0 g (wt/wt) of $Al_2O_3$ as a pore control agent. Following mixture was under the foaming process for 20 minutes at a foaming temperature of $950^{\circ}C$. The result yielded the foaming agent with 45% of the opened porosity and 0.5-0.7 of the sound absorbing coefficient. This alumino-borosilicate foamed glass with the sound absorption property showed excellent physical and mechanical properties such as density of $0.21g/cm^3$, bending strength of $55N/cm^2$ and compression strength of $298N/cm^2$ which can be ideally used as sound absorption materials with heat-resisting and chemical-resisting property.

Comparison of Acoustic Performance Depending on the Location of Sound Absorptive and Diffuser in Small Auditoriums Using 1/10 Scale Models (1/10 축소모형을 이용한 소공연장의 흡음재와 확산체의 적용위치에 따른 음향성능 비교)

  • Kim, Tae-Hee;Park, Chan-Jae;Park, Ji-Hoon;Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.2
    • /
    • pp.146-156
    • /
    • 2015
  • This study investigated how the location of sound absorptive materials and sound diffusers affects the acoustic performance of small auditoriums. It was conducted for a standard model established with the averaged dimension of 36 auditoriums which had opened since 2000 in Daehak-ro, Seoul. In this study, the installation area of finishing materials was calculated upon a back wall which had the smallest installation effective area of finishing materials. To analyze the changes of acoustic performance according to installation location of finishing materials, experiments were carried out using the 1/10 down scale models for 8 cases which were made by classifying the installation location of ceiling and side wall into the front, middle and rear part.The used acoustic parameters were reverberation time (RT), early decay time (EDT), clarity (C80), definition (D50) and speech transmission index (STI). In result, the index related to the amount of reverberant sound (RT, EDT) showed the great changes when evaluating it through just noticeable difference (JND), but the one related to clarity (C80, D50, STI) hardly indicated the changes. In case to obtain short reverberation time, it was most effective to control reverberation time through the side walls when installing sound absorptive and diffusive materials, and side wall front was the location which could get the shortest reverberation time.