• Title/Summary/Keyword: Sound absorption coefficient

Search Result 194, Processing Time 0.019 seconds

Evaluation of Non-slip for Vehicle's Environmental Sub-Mat (자동차용 친환경적인 Sub-Mat의 Non-Slip기능 평가)

  • Eo, Yu-Rim;Kim, Ki-Tai;Kim, Joo-Yong;Kim, Young-Su
    • Science of Emotion and Sensibility
    • /
    • v.15 no.2
    • /
    • pp.177-182
    • /
    • 2012
  • Automotive sub-mat carpet for convenience and comfort of floor administration is additional supplemented floor mat. Sub Mat Backing of the current vehicle's materials reclaimed rubber, PVC, etc. are used, but secondary rubber and PVC Backing have bad sound absorption. Also rubber is heavy too. Contact surfaces between PET staple fiber, PET non-woven, PVC backing and car's floor carpet was measured the coefficient of friction for each sub-mat's non-slip evaluation. A surface of PET non-woven sub-mat has the highest coefficient of friction. Each of sample was observed by optical microscope the contact surfaces before and after. Contact surfaces of PET staple fiber sub-mat was changed increasingly to non-woven. This fact is shown that the sub-mat would be tangled between its contact surface and top of the floor carpet. It is expected to be highly non-slip. In case of PET non-woven sub-mat had not different for contact surfaces between before and after. And PVC backing was shown lower non-slip than other samples. The result of optical microscope and coefficient of friction is seems to be related.

  • PDF

An Experimental Study on the Properties of Porous Concrete according to the Mix Factors and Compaction Load (배합조건 및 다짐하중에 따른 포러스 콘크리트의 특성에 관한 실험적 연구)

  • Lim, Seo-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.83-91
    • /
    • 2015
  • Porous concrete consists of cement, water and coarse aggregate and has been used for the purpose of decreasing the earth environmental load such as air and water permeability, sound absorption, etc. However, the physical and mechanical properties of porous concrete changes due to compaction load during construction. For such a reason, the purpose of this study is to investigate the physical and mechanical properties of porous concrete according to the kinds of binder, the ratio of water to binder and target void ratio. In particular, this study has been carried out to investigate the influence of compaction load on the void ratio, strength and coefficient of permeability. Aggregate used in this study are by-products generated during production of crushed gravel with a maximum size of 13mm. The results of this study showed that the target void ratio, the coefficient of permeability and compressive strength of porous concrete had a close relationship with the void ratio, and it will be possible that the void ratio is suggested by the mix design of porous concrete. The compressive strength of porous concrete was the highest at the content of the expansive admixture of 5% and compared to non-mixture, 10% mixture of silica fume improved compressive strength about 32%. And in the result of the study to change the compaction load, the compressive strength increased from the load of 15kN, the void ratio decreased from the load of 0.8kN, the coefficient of permeability decreased from the load 35kN, respectively.

The Spectrum of Feeding Sound and the Response of Seabass , Filefish and Swellfish (한국 남해에서의 해수의 광학적 성질 - 농어 . 쥐치 . 검복 -)

  • 양용림
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.18 no.2
    • /
    • pp.61-67
    • /
    • 1982
  • Optical properties of sea water were studied in the southern sea of Korea, based on ten oceanographic stations in July, 1980. Submarine daylight intensity was measured at intervals of 5m depth in the upper 70m layer by using the underwater irradiameter (Kahlsico # 268 WA 360). The mean absorption coefficients of the sea water were shown as 0.102 (0.066~0.137), 0.119 (0.069~0.154), 0.091 (0.054~.0123), and 0.095 (0.056~0.129) for clear, red, green, and blue color respectively. The transparency ranged from 13 to 25 meters (mean 17.1 m). The mean water color in this area was 3.9 (3-5) in Forel scales. The relation between absorption coefficient (k) and transparency (D) was k=1.17/D, k=2.01/D, k=1.52/D, and k=1.60/D for clear, red, green, and blue color respectively. The rates of light penetration for clear, red, green, and blue color in four different depths were computed with reference to the surface light intensity respectively. The mean rates of light penetration in proportion to depths were as follows; clear : 57.3%(5m), 20.82%(15m), 5.16%(30m), 0.94%(50m). red : 52.2%(5m), 15.99%(15m), 2.99%(30m), 0.39%(50m). green : 60.9%(5m), 24.51%(15m), 7.11%(30m), 1.56%(50m). blue : 59.4%(5m), 22.92%(15m), 6.09%(30m), 1.29%(50m).

  • PDF

Study on the improvement of prediction model for the railway environmental noise using ISO 9613-2 (ISO 9613-2를 이용한 철도 환경소음 예측 모델 개선에 관한 연구)

  • Jang, Seungho;Koh, Hyo-In;Hong, Jiyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.1
    • /
    • pp.11-26
    • /
    • 2017
  • Approximate empirical equations obtained by measuring overall noise levels at different distances have been used to evaluate environmental influence of the railway noise though the accurate prediction of noise levels is important. In this paper, a noise prediction model considering the frequency characteristics of noise sources and propagation was suggested to improve the accuracy of noise prediction. The railway noise source was assorted into track, wheel, traction and aerodynamic components and they were characterized with the source strength and speed coefficient at each octave-band frequency. Correction terms for the acoustic roughness and the track/bridge condition were introduced. The sound attenuation from a source to a receiver was calculated taking account of the geometrical divergence, atmospheric absorption, ground effect, diffraction at obstacles and directivity of source by applying ISO 9613-2. For obtaining the source strength and speed coefficients, the results of rolling noise model, numerical analysis and measurements of pass-by noise were analyzed. We compared the predicted and measured noise levels in various vehicles and tracks, and verified the accuracy of the present model. It is found that the present model gives less error than the conventional one, so that it can be applied to make the accurate prediction of railway noise effect and establish its countermeasures efficiently.