• 제목/요약/키워드: Sound absorbing materials

검색결과 109건 처리시간 0.025초

재생 자원의 흡음특성에 관한 연구 -폐지와 담배필터를 중심으로- (Study on the Sound Absorbing Characteristics of Recycled Materials -Based on used Paper and Cigarette Filters-)

  • 최창하;조해용;이주민
    • 한국환경과학회지
    • /
    • 제10권1호
    • /
    • pp.9-12
    • /
    • 2001
  • In this study, development of new sound absorbent which is safety, economical and efficient with using recycled materials is tried for substitution of commercial sound absorbent. The sound absorbents, used in this investigation, were made of used paper or filters of cigarette butts. With the variation of the material densities, sound absorptions of materials were measured. The impedance tube method is used for measuring sound absorption coefficient of the new sound absorbent materials. The measured frequency range was 250Hz to 4000Hz in 1/3 octave band. The sound absorption coefficient of the commercial materials and that of the materials synthesized in the our laboratory show almost same value.

  • PDF

Sound Absorption and Physical Properties of Carbonized Fiberboards with Three Different Densities

  • Lee, Min;Park, Sang-Bum;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권5호
    • /
    • pp.555-562
    • /
    • 2014
  • Characteristics of carbonized fiberboard such as chemical materials absorption, electromagnetic shielding, and electrical and mechanical performance were determined in previous studies. The carbonized board therefore confirmed that having excellent abilities of these characteristics. In this study, the effect of density on physical properties and sound absorption properties of carbonized fiberboards at $800^{\circ}C$ were investigated for the potential use of carbonized fiberboards as a replacement of conventional sound absorbing material. The thickness of fiberboards after carbonization was reduced 49.9%, 40.7%, and 43.3% in low density fiberboard (LDF), medium density fiberboard (MDF), and high density fiberboard (HDF), respectively. Based on SEM images, porosity of carbonized fiberboard increased by carbonization due to removing adhesives. Moreover, carbonization did not destroy structure of wood fiber based on SEM results. Carbonization process influenced contraction of fiberboard. The sound absorption coefficient of carbonized low density fiberboard (c-LDF) was higher than those of carbonized medium density fiberboard (c-MDF) and carbonized high density fiberboard (c-HDF). This result was similar with original fiberboards, which indicated sound absorbing ability was not significantly changed by carbonization compared to that of original fiberboards. Therefore, the sound absorbing coefficient may depend on source, texture, and density of fiberboard rather than carbonization.

탄성다공성 재질에서 유한진폭 입사음파의 흡음 특성 (Sound Absorption Characteristics of Finite-Amplitude Acoustic Waves in Poroelastic Materials)

  • 이수일;김진섭;강연준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.591-595
    • /
    • 2000
  • Sound absorbing characteristics of poroelastic materials is known to be greatly affected by high intensity acoustic waves. However, this effect has not been considered yet. In this study, the extended semilinear model based on Biot's theory for the porous materials and the characteristics of nonlinear waves in poroelastic sound absorbing materials were introduced. The expressions for the finite-amplitude acoustic plane waves were presented. By combining each nonlinear wave with appropriate matching conditions, we could investigate the effects of finite-amplitude acoustic waves on absorption characteristics of poroelastic materials. In the most ideal case considered in this paper, the absorption coefficient was found to become larger than that of linear incident waves. It was shown that the absorption coefficient became greater especially as frequency goes higher and as distance from the source goes larger. These phenomena may be inferred to result from 'dissipation effects due to nonlinearity'. This finding may have important implications for high intensity noise control.

  • PDF

흡음재 및 제진재의 최적배치를 이용한 구조-음향 연성계의 소음제어 (Sound Control of Structural-acoustic Coupling System Using Optimum Layout of Absorbing Material and Damping Material)

  • 김동영;홍도관;안찬우
    • 한국소음진동공학회논문집
    • /
    • 제15권2호
    • /
    • pp.161-168
    • /
    • 2005
  • The absorbing material is mostly used to changing the acoustic energy to the heat energy in the passive control, and that consists of the porous media. That controls an air borne noise while the stiffened plates, damping material and additional mass control a structure borne noise. The additional mass can decrease the sound by mass effect and shift of natural frequency, and damping material can decrease the sound by damping effect. The passive acoustic control using these kinds of control materials has an advantage that is possible to control the acoustic in the wide frequency band and the whole space at a price as compared with the active control using the various electronic circuit and actuator. But the space efficiency decreased and the control ability isn't up to the active control. So it is necessary to maximize the control ability in the specific frequency to raise the capacity of passive control minimizing the diminution of space efficiency such an active control. Therefore, the characteristics of control materials and the optimum layout of control materials that attached to the boundary of structure-acoustic coupled cavity were studied using sequential optimization on this study.

바텀애쉬를 사용한 경량 기포콘크리트의 소음저감 성능에 관한 실증실험 연구 (Practical Field Test on the Sound Reduction Properties of Formed Concrete using Bottom Ash)

  • 노재명;권기주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.601-604
    • /
    • 2006
  • Recently the new inorganic sound-absorbing material manufacturing techniques have introduced. These mainly is plentifully used in the place where the noise damage becomes problem in life environment, partitioning of the apartment, the railroad and the express highway, school and the residential quarter neighboring area etc. While the sound-absorbing material has vast quantity of open pore, sound insulation material, used in the apartment and high building in order to prevent the sound between layers, has suitable quantity of closed pore. The fly ash is widely used in the cement materials and the concrete binder material. The bottom ash, however, is rarely used for the grain size is big and multiform with unburning carbon ingredient. In this paper, the practical field tests and the results on the sound reduction properties of formed concrete using bottom ash are described.

  • PDF

공동주택에서 중공 슬래브 바닥의 차음 특성에 관한 연구 (A Study on the Characteristics of Sound Insulation at the Circular Voided Concrete Floor in the Multi-Housing)

  • 손철수
    • 한국주거학회논문집
    • /
    • 제11권1호
    • /
    • pp.171-181
    • /
    • 2000
  • The purpose of the resent research is to investigate the characteristics of sound insulation at the circular voided concrete slab in the multi-housing. In order to do this research, the method for field measurement of floor impact sound level was used following the Korea Standard F2810-1996. For the multi-housing, three kinds of circular voided concrete slabs are used to measure the characteristics of sound insulation.The results are as follows; 1.The main factor affecting the characteristics of sound insulation at the circular voided concrete slab in the multi-housing is sound-absorbing materials in the circular tube. 2. The main factor to effect the difference of sound pressure level is circular tube in the concrete slab. 3. The forms of circular tubes effect the characteristics of sound insulation at the circular tube. 4. Sound Pressure Level resulting from the piping direction of circular tubes in little different to octave band level.More study will be needed about the depth and distance of sound insulation materials, and the components of sound insulation materials for the multi-housing.

  • PDF

메타-아라미드 섬유를 이용한 자동차용 고내열 흡음재 개발 (Development of High Temperature Resistant Sound Absorbing Materials Using Meta-aramid Fiber)

  • 김근영;서원진;정기연;서종범;조인구
    • 한국소음진동공학회논문집
    • /
    • 제23권9호
    • /
    • pp.857-862
    • /
    • 2013
  • Recently, the importance of GDI and diesel engine noise reduction is required, so newly designed components very close to noise sources are added in order to maximize the sound absorbing performances. In this study, the high temperature resistant part made with meta-Aramid nonwoven, which was applicable for high temperature applications of about $200^{\circ}C$ or more, such as engines and exhaust systems, was developed. And three-dimensional shaped component was successfully fabricated, and it was observed high temperature resistance of $260^{\circ}C$, lightweight properties and the noise was decreased by 1.0 dB with 70 g of product.

모드 매칭법을 이용한 다층 다공성 탄성 흠음재가 채워진 원통형 소음기의 음향투과손실 계산 (Calculating transmission loss of cylindrical silencers lined with multi-layered poroelastic sound absorbing materials using mode matching method)

  • 이종무;양해상;성우제
    • 한국음향학회지
    • /
    • 제41권4호
    • /
    • pp.375-388
    • /
    • 2022
  • 본 논문은 다층 다공성 흡음재가 채워진 원통형 소음기의 음향투과손실을 구하는 과정을 다루었다. 다층다공성 흡음재 내부에서 전파되는 파동을 다루기 위해 Biot모델과 Johnson-Champoux-Allard-Lafarge(JCAL) 모델을 이용했다. 소음기 해석에 필요한 경계조건들을 얻었고 그것들을 토대로 수치적으로 모드를 구하는 과정을 설명했다. 얻은 모드들을 이용하여 2층 소음기에 대해 수치적인 실험을 진행했으며 처음 12개의 모드만으로도 음향투과손실이 수렴함을 보였다. 마지막으로 흡음재의 종류를 바꿔가면서 음향투과손실을 계산했고 이를 유한요소법을 이용한 결과와 비교함으로써 본 연구에서 제시한 모드 매칭법의 유효성을 검증했다.

흡음을 위한 다공성 물질의 최적형상설계에서 물성치의 영향 (Effects of Material Properties on Optimal Configuration Design of Absorbing Porous Materials)

  • 이중석;김윤영;강연준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.622-624
    • /
    • 2008
  • This investigation studies the effects of material properties and corresponding propagation wave types on optimal configurations of sound absorbing porous materials in maximizing the absorption performance by topology optimization. The acoustic behavior of porous materials is characterized by their material properties which determine motions of the frame and the air. When the frame has a motion, two types of compressional wave propagate in the porous material. Because each wave in the material make different influence on the absorption performance, it is important to understand the relative contribution of each wave to the sound absorption. The relative contribution of the propagating waves in a porous material is determined by the material properties, therefore, an optimal configuration of a porous material to maximize the absorption performance is apparently affected by the material properties. In fact, virtually different optimal configurations were obtained for absorption coefficient maximization when the topology optimization method developed by the authors was applied to porous materials having different material properties. In this investigation, some preliminary results to explain the findings are presented. Although several factors should be considered, the present investigation is focused on the effects of the material properties and corresponding propagation waves on the optimized configurations.

  • PDF

반응표면법을 이용한 진동-음향 연성계의 흡음재 최적배치 (Optimum Allocation of Sound Absorbing Materials in a Vibroacoustic System using Response Surface Methodology)

  • 홍도관;백황순;우병철;안찬우
    • 한국정밀공학회지
    • /
    • 제28권10호
    • /
    • pp.1196-1203
    • /
    • 2011
  • Statistical optimum methodology of table of orthogonal array, ANOM, ANOVA and RSM are applied to formulate optimum allocation design with design variables. It can be minimized average SPL of control volume, the objective function in closed system by optimal allocated positions of absorbing material. Structural natural frequency and acoustic natural frequency of cavity are analyzed by FEM and BEM in the closed system. Using BEM, average SPL of specific control volume is calculated according to the condition before using absorbing material and after using it. It is shown that noise is reduced by $5.02dB_{RMS}$ by absorbing material located at optimal position and minimum $1.83dB_{RMS}$ and maximum $3.47dB_{RMS}$ by the table of orthogonal array.