• Title/Summary/Keyword: Sound Velocity Profile

Search Result 20, Processing Time 0.032 seconds

Mean Flow Velocity Measurement Using the Sound Field Reconstruction (음장 재구성에 의한 관내 평균유속 측정)

  • Kim, Kun-Soon;Cheung, Wan-Sup;Kwon, Hyu-Sang;Park, Kyung-Am;Paik, Jong-Seung;Yoo, Seong-Yeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.924-929
    • /
    • 2000
  • This paper addresses a new technique of measuring the mean flow velocity over the cross sectional area of the pipe using sound field reconstruction. When fluid flows in the pipe and two plane waves propagate oppositely through the medium, the flow velocity causes the change of wave number of the plane waves. The wave number of the positive going plane wave decreases and that of negative going one increases in comparison to static medium in the pipe. Theoretical backgrounds of this method are introduced in detail and the measurement of mean flow velocity using the sound field reconstruction is not affected by velocity profile upstream of microphones.

Effect of Sound Velocity on Bathymetric Data Aquired by EM120(multi-beam echo sounder) (EM120(multi-beam echo sounder)을 이용한 지형조사 시 적용되는 해수 중 음속 측정의 중요성; 수중음속 측정장비의 특성 비교)

  • Ham, Dong-Jin;Kim, Hyun-Sub;Lee, Gun-Chang
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.295-301
    • /
    • 2008
  • Bathymetric data collected using a multi-beam echo sounder during marine scientific survey is essential for geologic and oceanographic research works. Accurate measurment of sound velocity profile(SVP) in water-column is important for bathymetric data processing. SVP can vary at different locations during the survey undertaken for wide areas. In addition, an observational error can occur when different equipments(Sound Velocity Profiler, Conductivity Temperature Depth, eXpendable BathyThermograph) are used for measuring SVP at the same water column. In this study, we used an MB-system software to show changes in bathymetry caused by variation of SVP. The analyses showed that the sound velocity(SV) changes due to the depth and thickness of thermocline had more significant effects on the resulting bathymetric data than those of surface mixed layer. The observational errors between SVP measuring instruments did not cause much differneces in the processed bathymetric data. Bathymetric survey line is better to be established to the direction that the change of temperature can be minimize to reduce the variation of SVP during the data acquisition along the survey line.

Underwater Sound Propagation in a range-dependent Shallow water environment (비균질한 천해에서의 수중음파 전파)

  • Na, Jeong-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.64-73
    • /
    • 1987
  • Low frequency sound propagation in a range-dependent shallow water environment of the Korea Strait has been studied by using the adiabatic coupled mode, ADIAB. The range-dependent environment is unique in terms of horizontal variations of sound velocity profiles, sediment thickness and attenuation coefficients and water depths. For shallow source and receiver depths, the most important mechanism involved in the propagation loss is the depth changing character of mode functions that strongly depends on the local sound velocity profile. Application of the adiabatic coupled mode theory to shallow water environment is reasonable when higher modes are attenuated due to bottom interaction effects. Underwater sound propagation in a range-dependent shallow-water environment.

  • PDF

Revised Beamforming Inversion Method for Ocean Acoustic Tomography (해양음향 토모그래피를 위한 개선된 빔형성 역산 기법)

  • 오택환;오선택;나정열;유승기;김영신
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.8
    • /
    • pp.645-651
    • /
    • 2003
  • This paper presents a revised beamforming inversion method for ocean acoustic tomography. In the proposed inversion method, the relation between group velocity and phase velocity that are the characteristics of the waveguide is used for the inversion of perturbed sound speed profile. The group velocity and phase velocity can be expressed as a function of the travel time and arrival angle of the received signals that are analyzed by the beamforming signal processing. This paper illustrates the simulated results of inversion for the fluctuated sound speed profile of the East Korea Sea and we found the applicability of revised beamforming inversion method to range independent ocean.

A precision analysis of Baengnyeongdo Multi-beam echosounder data using acoustic ray theory (음선이론을 이용한 백령도 부근해역 다중빔 수심측량 자료의 수직.수평 오차 분석)

  • You, Seung-Ki;Joo, Jong-Min;Choi, Jee-Woong;Kim, Young-Bae;Jung, Hyun;Kim, Seo-Cheol;Park, Sung-Kyeu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.167-173
    • /
    • 2009
  • Bathymetry survey around the Baengnyeong-do was made by the Korea Hydrographic and Oceanographic Administration (KHOA), using the Simrad EM3000 Multi-Beam EchoSounder (MBES) mounted at the hull of the R/V Badaro 1. Sound velocity were monitored with frequent sound velocity profiler(SVP) casts during the acoustic measurements. The depth distribution and fluctuation of thermocline varied locally owing to the effect of several current flows such as Kuroshio current and Yellow sea coastal waters. These uncertainties cause the falling-off in accuracy of MBES results. In this paper, the bathymetry results will be presented and their accuracy will be discussed along with comparisons to the time and spatial variations in sound velocity profile.

  • PDF

A Study on the Sparse Channel Estimation Technique in Underwater Acoustic Channel (수중음향채널에서 Sparse 채널 추정 기법에 관한 연구)

  • Gwun, Byung-Chul;Lee, Oi-Hyung;Kim, Ki-Man
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1061-1066
    • /
    • 2014
  • Transmission characteristics of the sound propagation is very complicate and sparse in shallow water. To increase the performance of underwater acoustic communication system, lots of channel estimation technique has been proposed. In this paper, we proposed the channel estimation based on LMS(Least Mean Square) algorithm which has faster convergence speed than conventional sparse-aware LMS algorithms. The proposed method combines $L_p$-norm LMS with soft decision process. Simulation was performed by using the sound velocity profile which acquired in real sea trial. As a result, we confirmed that the proposed method shows the improved performance and faster convergence speed than conventional methods.

A Study to improve a Target Localization Performance using Passive Line Arrays buried in the Seabed (매설된 선배열 음향센서를 이용한 표적 위치추정 성능향상 기법 연구)

  • Yang, In-Sik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.2 s.21
    • /
    • pp.49-57
    • /
    • 2005
  • The target localization using the line arrays buried in the seabed is a difficult problem due to the complex sea bottom characteristics and need to compensate the wave propagation effect to localize the target accurately Sound speed mismatch in the seabed causes a bias in the target bearing estimation and induces the localization error. In this paper we describe a target localization method with improved accuracy of target bearing and localization by calibration the sound speed in the seabed. The proposed algorithm is verified through the ocean data.

An Experimental Study on Ducted Silencers I (ISO 7235) (덕트 소음기의 실험적 연구 I (ISO 7235))

  • 남경훈;박희주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.282-287
    • /
    • 2001
  • The test facility has been manufactured to predict the dynamic insertion loss and the pressure drop for ducted silencers based on ISO 7235. The qualification test of the test facility is necessary for determining the dynamic insertion loss and the pressure drop of the test silencer, and is surveyed the reflection coefficient for an anechoic termination, the velocity profile near the upstream connection to the test silencer, the reduction of the system silencer and the limiting insertion loss due to the flanking sound transmission along the duct walls.

  • PDF

Effects of Cross-Sectional Dimension and Moisture Profile of Small Specimens on Characteristics of Ultrasonic Wave Propagation (목재의 단면적과 수분경사가 초음파 전달 특성에 미치는 효과)

  • Kang, He-Yang;Lee, Kwan-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.19-24
    • /
    • 2000
  • Effects of the cross-sectional dimension and moisture profile of wood specimens on the ultrasonic sound velocities of radiata pine heartwood and sapwood. Each moisture profile model specimen was made by composing five wood pieces with various moisture contents. As the cross-sectional dimensions decreased the ultrasonic velocities of both heartwood and sapwood decreased by 4~8%. In the ultrasonic signals transmitted through the specimens low frequency components more dominated than high frequency components as the dimension of cross section increased. The specimens with the same average MCs and different moisture profiles showed different ultrasonic velocities. By plotting the ultrasonic velocities against the average moisture contents of the inner three pieces of the moisture profile model specimens it was revealed that three distinct plot patterns existed.

  • PDF

Particle image velocimetry measurement of complex flow structures in the diffuser and spherical casing of a reactor coolant pump

  • Zhang, Yongchao;Yang, Minguan;Ni, Dan;Zhang, Ning;Gao, Bo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.368-378
    • /
    • 2018
  • Understanding of turbulent flow in the reactor coolant pump (RCP) is a premise of the optimal design of the RCP. Flow structures in the RCP, in view of the specially devised spherical casing, are more complicated than those associated with conventional pumps. Hitherto, knowledge of the flow characteristics of the RCP has been far from sufficient. Research into the nonintrusive measurement of the internal flow of the RCP has rarely been reported. In the present study, flow measurement using particle image velocimetry is implemented to reveal flow features of the RCP model. Velocity and vorticity distributions in the diffuser and spherical casing are obtained. The results illuminate the complexity of the flows in the RCP. Near the lower end of the discharge nozzle, three-dimensional swirling flows and flow separation are evident. In the diffuser, the imparity of the velocity profile with respect to different axial cross sections is verified, and the velocity increases gradually from the shroud to the hub. In the casing, velocity distribution is nonuniform over the circumferential direction. Vortices shed consistently from the diffuser blade trailing edge. The experimental results lend sound support for the optimal design of the RCP and provide validation of relevant numerical algorithms.