• Title/Summary/Keyword: Sound Simulation

Search Result 585, Processing Time 0.023 seconds

A study on the Optimal Far field Source locations in the Acoustic Modelling using Equivalent Source Method (등가소스법을 이용한 실내 음장 모델링에서의 원방 소스 최적화 연구)

  • Baek, Kwang-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.216-221
    • /
    • 2001
  • The equivalent source method(ESM) is used for the calculation of the internal pressure field for an enclosure which can have arbitrary boundary conditions and may include internal objects which scatter the sound field. The advantage of using ESM is that it requires relatively low computing cost and is easy to model the internal diffracting objects. In the ESM modelling, some of the equivalent positions are chosen to be the same as the first order images of the source inside the enclosure, some are positioned on a spherical surface some distance outside the enclosure. The normal velocity on the surfaces of the enclosure walls is evaluated at a larger number of positions than there are equivalent sources. The sum of the squared difference between this velocity and the expected is minimized by adjusting the strength of the equivalent sources. This study is on the optimal equivalent source positions, the far field sources. Typically, the far field sources are evenly distributed on a surface of a virtual sphere which is centered at the enclosure with a sufficiently large radius. In this study, optimal far field source locations are searched using simulated annealing method and simulation results showed that optimally located sources gave better accuracy even with a smaller number of far field sources.

  • PDF

Study on the Effects of Computational Parameters in SPH Method (SPH 기법의 계산인자 민감도에 대한 연구)

  • Kim, Yoo-Il;Nam, Bo-Woo;Kim, Yong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.4
    • /
    • pp.398-407
    • /
    • 2007
  • A smoothed particle hydrodynamics (SPH) method is applied for simulating two-dimensional free-surface problems. The SPH method based on the Lagrangian formulation provides realistic flow motions with violent surface deformation, fragmentation and reunification. In this study, the effect of computational parameters in SPH simulation is explored through two-dimensional dam-breaking and sloshing problem. The parameters to be considered are the speed of sound, the frequency of density re-initialization, the number of particle and smoothing length. Through a series of numerical test. detailed information was obtained about how SPH solution can be more stabilized and improved by adjusting computational parameters. Finally, some numerical simulations for various fluid flow problem were carried out based on the parameters chosen through the sensitivity study.

An Optimal Selection of Embedded Platform for Specific Applications (특정목적 수행을 위한 임베디드 시스템 플랫폼의 최적 선택)

  • Moon, Ho-Sun;Kim, Yong-Deak
    • 전자공학회논문지 IE
    • /
    • v.47 no.1
    • /
    • pp.48-55
    • /
    • 2010
  • The goal of this paper is to determine optimal hardware platform for specific applications. In order to develop an understanding of how select the optimal platform, we focus upon the real-time embedded vehicle system for processing forward image and sound. In this paper we propose to measure parameters such as instructions, execution cycle, required memory size for program and data by using ARMulator. We have measured three types of processor cores: ARM7, ARM9 and ARM10. The results of the study indicated that the proposed methods could measure the minimal requirements of hardware platform for specific applications. By defining lower limit of hardware specifications in embedded systems, we can minimize expenses with suitable system performance without implementing the system.

A Study on Design for the Interactive VR Fashion Show (상호작용 기반의 VR 패션쇼 디자인 설계)

  • Ahn, Duck Ki;Cho, Sung Hyun
    • Journal of Korea Game Society
    • /
    • v.20 no.3
    • /
    • pp.25-34
    • /
    • 2020
  • This study is a VR system design designed to evaluate the impact of interaction on user experience analyzed by developer's perspective for the interactive VR fashion show. In the VR fashion show design, we produced an interactive system through the four interactive elements of camera viewpoint, cloth, effects, and sound. The interactive design system is proposed based on three application facto rs in VR space design: speed, range, and mapping. The study focused on the user experience based on format conversion to apply the Unity3D engine using 3D model, animation, 2D UI design, and simulation.

Optimal Gating System Design of Escalator Step Die Casting Part by Using Taguchi Method (실험계획법에 의한 승강기용 구동부 주조품의 다이캐스팅 탕구방안 최적화)

  • Jeong, Won-Je;Yoon, Hyung-Pyo;Hong, Sun-Kuk;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.20 no.2
    • /
    • pp.97-103
    • /
    • 2000
  • In this study, a design of experiment, Taguchi method, was applied to optimize gating system design of escalator step die casting parts. Six shape factors which affect filling sequence of melt are adopted and divided into two levels respectively. Initial feeding differences of melt which were calculated by using S/N(signal-to-noise) ratio in each condition were demonstrated with the simulation of Flow-3D software program. Variations of S/N ratio according to shape factors were obtained and the optimal condition of gating system could also be obtained. It could be found that width of gate, contact angle of gate, thickness of runner are more effective factors on the filling sequence of melt than the others in this case of escalator step die casting parts. It showed that the economical gating system and sound filling sequence of melt were obtained by using Taguchi method.

  • PDF

Design Method for the Intermediate Dies in Multi-Stage Shape Drawing: The Case for a Hollow Linear Motion Guide Rail (중공형 LM-Guide Rail 제조를 위한 다단 형상 인발공정의 중간 다이스 설계에 관한 연구)

  • Lee, K.H.;Kim, S.H.;Lee, S.B.;Kim, D.H.;Kim, S.M.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.24 no.3
    • /
    • pp.155-160
    • /
    • 2015
  • One of the most important aspects in multi-stage shape drawing is the proper design of the intermediate dies especially to provide adequate metal distribution. In the current study, a method for designing the intermediate dies has been developed to manufacture hollow linear motion guide rails by multi-stage shape drawing. The design method is based on the modified virtual die method. The effectiveness of the proposed design method was verified by FE-simulations and experiments using Mn55Cr carbon steel. From the results of the FE-simulations and the experiments, the proposed design method led to a drawn product with a sound shape. The dimensional tolerances of the product were within the allowable specified tolerances.

Active Noise Control for Target Point Inside Bore Using Property of MRI Noise (MRI 소음의 특성을 이용한 공동 내부 목표점의 능동소음 제어)

  • Lee, Nokhaeng;Park, Youngjin;Park, Youn-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.1
    • /
    • pp.62-68
    • /
    • 2014
  • Recently, MRI(magnetic resonance imager) scanner is continually used for medical diagnosis and many biomedical researches. When it operates, however, intense noise is generated. The SPL(sound pressure level) of the noise approaches 130 dB especially in 3 T(Tesla) MRI. Meanwhile, more than 3 T MRI scanners have been developed to get higher-resolution images, so louder noise is expected in the future. The intense noise makes patients feel nervous and uncomfortable. Moreover, it could possibly cause hearing loss to patient in extreme cases. For this reason, some active noise control systems have been researched. One of them used feedback Filtered-X LMS(FXLMS) algorithm which is able to control only narrowband noises and possible to diverge in severe case. In this paper, we determine the property of MRI noise. Using the property, we applied a method of open-loop and adaptive control for reducing MRI noise at target point inside bore. We verified performance of the method with computer simulation and preliminary experiment. The results demonstrate that the method can effectively reduce MRI noise at target point.

Robust Design of Pantograph Panhead Sections Considering Aerodynamic Stability and Noise (유동안정성 및 유동소음을 고려한 판토그라프 팬헤드 단면의 강건설계)

  • 조운기;이종수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1235-1241
    • /
    • 2001
  • Pantograph design process must be considered in terms of stability of aerodynamics and reduction of aeroacoustics. Furthermore Pantograph needs to be insensible to severe circumstance condition like typhoon, tunnel, a change of season. In this paper, robust design of panhead sections is conducted based on the Taguchi's design of experiment method. In the aeroacoustic noise analysis, an acoustic analogy using the Ffowcs Williams and Hawkings (FW-H) equation is used to calculate the flow induced sound pressure level. From the near-field CFD analysis data, the far-field noise is predicted at the positions of 25m away from panhead contact strips. Based on aerodynamic (CFD) and aeroacoustic (FW-H) analysis data, the optimal sizing and positioning ofpanhead elements are determined using robust design optimization method. Design parameters such as thickness, length and radius are controllable factors, while outdoor air temperature and atmospheric pressure are considered as uncontrollable factors in the context of Taguchi's approach. A number of CFD simulation and aeroacoustic analysis are performed based on orthogonal arrays. Using a parameter design procedure associated with signal-to-noise (SIN) ratio and sensitivity analysis, an optimal level of design parameters are extracted to minimize the disconnection ratio between contact strips and catenary system, and reduce the far-field aeroacoustic noise.

  • PDF

Numerical Simulation of MIL-S-901D Heavy Weight Shock Test of a Double Resiliently Mounted Main Engine Module (이중 탄성지지 주기관 모듈의 MIL-S-901D 중중량 충격시험 수치 시뮬레이션)

  • Kwon, Jeong-Il;Lee, Sang-Gab;Chung, Jung-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.499-505
    • /
    • 2005
  • Underwater explosion shock response analysis of a nonlinear double resiliently mounted equipment on a MIL-S-901D Large floating Shock Platform(LFSP) was carried out using LS-DYNA3D/USA. As a nonlinear double resiliently mounted equipment, real main engine module of naval ship was considered, where the engine, bearing, and base frame including sound enclosure were treated as rigid bodies with six degrees of freedom. The nonlinear effects of resilient mounts on its shock response characteristics were examined, and the usefulness of our suggested method was also confirmed comparing with calculation results by the equipment maker.

A method for measuring tonal noise of underwater vehicle using virtual synthetic array in near-field (근접장에서 가상 합성 배열을 이용한 수중 이동체의 토널 소음 측정 방법)

  • Kang, Tae-Woong;Lee, Guen-Hyeok;Kim, Ki-Man;Han, Min-Su;Choi, Jae-Yong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.443-450
    • /
    • 2018
  • A receiving array system can be applied for tonal noise analysis of underwater vehicles, but it is difficult to install and operate, and a lot of cost is required. In order to overcome this problem, this paper proposes a method to measure the tonal noise of underwater vehicle after synthesizing a virtual array using single receiver. The proposed method compensates the Doppler frequency and time delay caused by the movement of the underwater sound source and applies the focused beamforming technique. The performance of the proposed method was analyzed via simulation.