• Title/Summary/Keyword: Sound Power Measurement

Search Result 97, Processing Time 0.027 seconds

Asymmetric Activation in the Prefrontal Cortex and Heart Rate Variability by Sound-induced Affects (음향감성에 의한 전전두엽의 비대칭성과 심박동변이도)

  • Jang Eun-Hye;Lee Ji-Hye;Lee Sang-Tae;Kim Wuon-Shik
    • Science of Emotion and Sensibility
    • /
    • v.8 no.1
    • /
    • pp.47-54
    • /
    • 2005
  • This study is aimed to inspect how the different sensitivities in Behavioral activation system(BAS) and behavioral inhibition system(BIS) modulate on the properties of physiological responses stimulated by positive or negative affective sound. We measured the electroencephalogram(EEG) and electrocardiogram (ECG) of 32 students, consisted of four groups depending on the BAS and BIS sensitivities, during listening to meditation music or noise. The EEG was recorded at Fpl and Fp2 sites and Power spectral density(PSD) of HRV was derived from the ECG, and the power of HRV was calculated for 3 major frequency ranges(low frequency[LF], medium frequency and high frequency[HF]). After listening to music or noise, subjects reported the affect induced by the sound. For EEG, the power in the alpha band at Fp2, especially in the alpha-2 band(9.0-11.0 Hz) increased during the subjects listening to music, while the power at Fpl increased during noise. During listening to meditation music, there is a tendency that the left-sided activation in prefrontal cortex(PFC) is positively correlated with the difference of BAS(Z)-BIS(Z). During listening to noise, there is a tendency that the right-sided activation in PFC is dominant in case any of the sensitivity of BAS or BIS is high. For HRV, we found that the index of MF/(LF+HF), during listening to music, was higher significantly in the individuals with a low BIS but high BAS than in the individuals with a low sensitivity both BIS and BAS individuals. With high BIS, regardless of the BAS sensitivity, the difference of this index values was not significant. From these results we suggest that the physiological responses of different individuals in BAS and BIS react differently under the same emotionally provocative challenge.

  • PDF

A Proposal on Calculation Model to Predict Environmental Noise Prediction Emitted by High Speed Trains (고속철도 환경소음예측을 위한 계산 모델 제안)

  • Cho, Dae-Seung;Cho, Jun-Ho;Kim, Jin-Hyeong;Jang, Kang-Seok;Yoon, Jae-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.843-848
    • /
    • 2011
  • Planning and construction of railway for high speed trains up to 400 km/h are recently driven in Korea. High speed train is one of the environment-friendly fastest mass transportation means but its noise generated by rolling, traction and aerodynamic mechanism can cause public complaints of residents nearby railways. To cost-effectively prevent the troublesome noise in a railway planning stage, the rational railway noise prediction method considering the characteristics of trains as well as railway structures should be required but it is difficult to find authentic methods for Korean high speed trains such as KTX and KTX-II. In this study, we propose a framework of our own railway noise prediction model emitted by Korean high speed trains over 250 km/h based on the recent research results carried out in EU countries. The model considers railway sound power level using several point sources distributed in heights as well as tracks, whose detail speed- and frequency-dependent emission characteristics of Korean high speed trains should be determined in near future by measurement or numerical analysis. The attenuation during propagation outdoors is calculated by the well-known ISO 9613-2 and auxiliary methods to consider undulated terrain and wind effect.

  • PDF

Development of a Seismic Measurement System with a reference for the Reduction of Artificial Noise (인공잡음 제거를 위한 기준점 이용 탄성파 측정시스템 개발)

  • Hwang, Hak-Soo;Lee, Tai-Sup;Sung, Nak-Hoon
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.4
    • /
    • pp.180-183
    • /
    • 1999
  • A proto-type seismic measurement system with a reference was developed to improve S/N (signal-to-noise ratio) of seismic data, especially in noisy urban areas. Two pairs of correlation measurements (the one for microphone and geophone, and another for electromagnetic (EM) loop and geophone) were carried out near Kimpo Airport and at Kimje. The spectrum analyses were also performed to investigate the correlation of two pairs of time series; one for microphone and geophone, and another for EM loop and geophone. The sound waves measured with the microphone and the geophone are highly correlated. However, differences in the reponses are readily identifiable across 200 Hz; in the vicinity of 100 Hz, the spectral energy for geophone is 20 dB higher than that for microphone, and at near 500 Hz, the spectral energy for microphone is 30 dB higher than that for geophone. Overall, the spectral energy appears concentrated on the frequency window below 600 Hz for geophone. It contrasts with the observation of dominant frequency at the range of above 200 Hz for microphone. The wave forms of EM noise (due to an ACDC inverter) measured with EM loop and geophone are consistently and highly correlated each other. The power spectrum of the EM noise for EM loop shows that the spectral energies at odd harmonic frequencies of 60 Hz are higher than those at even harmonic frequencies of 60 Hz. It is compared to the power spectrum for geophone; the spectral energies at odd harmonics are nearly same as those at even harmonic frequencies.

  • PDF

Remote Fault Detection in Conveyor System Using Drone Based on Audio FFT Analysis (드론을 활용하고 음성 FFT분석에 기반을 둔 컨베이어 시스템의 원격 고장 검출)

  • Yeom, Dong-Joo;Lee, Bo-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.10
    • /
    • pp.101-107
    • /
    • 2019
  • This paper proposes a method for detecting faults in conveyor systems used for transportation of raw materials needed in the thermal power plant and cement industries. A small drone was designed in consideration of the difficulty in accessing the industrial site and the need to use it in wide industrial site. In order to apply the system to the embedded microprocessor, hardware and algorithms considering limited memory and execution time have been proposed. At this time, the failure determination method measures the peak frequency through the measurement, detects the continuity of the high frequency, and performs the failure diagnosis with the high frequency components of noise. The proposed system consists of experimental environment based on the data obtained from the actual thermal power plant, and it is confirmed that the proposed system is useful by conducting virtual environment experiments with the drone designed system. In the future, further research is needed to improve the drone's flight stability and to improve discrimination performance by using more intelligent methods of fault frequency.

Detection of Abnormal Leakage and Its Location by Filtering of Sonic Signals at Petrochemical Plant (비정상 음향신호 필터링을 통한 플랜트 가스누출 위치 탐지기법)

  • Yoon, Young-Sam;Kim, Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.6
    • /
    • pp.655-662
    • /
    • 2012
  • Gas leakage in an oil refinery causes damage to the environment and unsafe conditions. Therefore, it is necessary to develop a technique that is able to detect the location of the leakage and to filter abnormal gas-leakage signals from normal background noise. In this study, the adaptation filter of the finite impulse response (FIR) least mean squares (LMS) algorithm and a cross-correlation function were used to develop a leakage-predicting program based on LABVIEW. Nitrogen gas at a high pressure of 120 kg/$cm^2$ and the assembled equipment were used to perform experiments in a reverberant chamber. Analysis of the data from the experiments performed with various hole sizes, pressures, distances, and frequencies indicated that the background noise occurred primarily at less than 1 kHz and that the leakage signal appeared in a high-frequency region of around 16 kHz. Measurement of the noise sources in an actual oil refinery revealed that the noise frequencies of pumps and compressors, which are two typical background noise sources in a petrochemical plant, were 2 kHz and 4.5 kHz, respectively. The fact that these two signals were separated clearly made it possible to distinguish leakage signals from background noises and, in addition, to detect the location of the leakage.

A Study of Weldability for Pure Titanium by Nd:YAG Laser(IV) - Lap Welding and Application for Heat Exchanger - (순티타늄판의 Nd:YAG 레이저 용접성에 관한 연구(IV) - 겹치기 용접 및 실물 열교환기로의 적용 -)

  • Kim, Jong-Do;Kwak, Myung-Sub;Lee, Chang-Je;Kil, Byung-Lea
    • Journal of Welding and Joining
    • /
    • v.28 no.1
    • /
    • pp.66-71
    • /
    • 2010
  • With large specific strength and outstanding corrosion resistance and erosion resistance in sea water, titanium and titanium alloy are widely used in heat exchanger production. In particular, pure titanium demonstrates outstanding molding performance and may be considered optimal for production of heat exchanger. Since titanium is very vulnerable to oxidation and embrittlement during welding, processes with less heat input are widely used, and laser welding is widely applied by considering production performance and shield etc in atmosphere. So far, 1st report and 2nd report compared and analyzed embrittlement degrees by bead colors of weldment through oxygen and nitrogen quantitative analysis and hardness measurement, and evaluated welding performance and mechanical properties of butt welding. This study evaluated field applicability of lap welding to heat exchange plate of LPG re-liquefaction device for ships through tensile stress test, hardness test and internal pressure test etc after deducing optimal weding condition and applying to actual heat exchange plate. In bead overlap area, the experiment produced sound welds with no porosity or defect by increasing and decreasing laser power, and tensile-shear test results indicated virtually the same tension and yield strength as base metal. As a result of measuring hardness at lateral cross section and bead overlap zone of actual heat exchanger welds, hardness difference within 20Hv was produced at base metal, HAZ and weldment, and as a result of pneumatic and hydraulic pressure test, no leakage occurred.

Functional beamforming for high-resolution ultrasound imaging in the air with random sparse array transducer (고해상도 공기중 초음파 영상을 위한 기능성 빔형성법 적용)

  • Choon-Su Park
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.361-367
    • /
    • 2024
  • Ultrasound in the air is widely used in industry as a measurement technique to prevent abnormalities in the machinery. Recently, the use of airborne ultrasound imaging techniques, which can find the location of abnormalities using an array transducers, is increasing. A beamforming method that uses the phase difference for each sensor is used to visualize the location of the ultrasonic sound source. We exploit a random sparse ultrasonic array and obtain beamforming power distribution on the source in a certain distance away from the array. Conventional beamforming methods inevitably have limited spatial resolution depending on the number of sensors used and the aperture size. A high-resolution ultrasound imaging technique was implemented by applying functional beamforming as a method to overcome the geometric constraints of the array. The functional beamforming method can be expressed as a generalized beam forming method mathematically, and has the advantage of being able to obtain high-resolution imaging by reducing main-lobe width and side lobes. As a result of observation through computer simulation, it was verified that the resolution of the ultrasonic source in the air was successfully increased by functional beamforming using the ultrasonic sparse array.